
© 2007 by the AMPLE consortium Public

AMPLE

Aspect –Oriented, Model-Driven, Product Line
Engineering

Specific Targeted Research Project: IST- 33710

Survey of existing
implementation techniques

with respect to their support for
the requirements identified in

M3.2

ABSTRACT
This deliverable consists of a list of identified requirements for variability in SPLs
and their motivation, the descriptions of the surveyed technologies and evaluation of
each technology with respect to the listed requirements. The survey includes the
technologies in use at industrial project partners and other promising AOP and MDD
technologies with a potential to solve identified shortcomings of currently practised
implementation techniques.

Document ID: AMPLE D3.1
Deliverable/
Milestone No: D3.1
Work-package No: WP3
Type: Deliverable
Dissemination: PU
Status: final
Version: 1.2
Date: 2007-07-30
Author(s): Christoph Pohl, Andreas Rummler (SAP), Vaidas
Gasiunas (TUD), Neil Loughran (UNLANC), Hugo Arboleda, Fabricio de
Alexandria Fernandes, Jacques Noyé, Angel Núñez, Robin Passama, Jean-
Claude Royer, Mario Südholt (EMN)

Project Start Date: 01 October 2006, Duration: 3 years

V1.2 7/30/2007 AMPLE WP3 D3.1 1 of 67

© 2007 by the AMPLE consortium Public

History of Changes

Version Date Changes
0.1 2007-06-01 Initial Version
0.2 2007-06-21 Updated section containing evaluation of SAP

techniques
0.3 2007-06-29 structural changes, initial conclusion
0.4 2007-06-29 Sections 2 and 3 by TUD
0.5 2007-07-03 Sections 2 and 4 by EMN
0.6 2007-07-06 Sections 3, 5, and 6 by SAP
0.7 2007-07-13 Update to sections about configuration management &

SAP techniques
0.8 2007-07-15 Added sections about component technology and

interpreters. Section 2 updated by comments of Uwe.
0.9 2007-07-16 Tool criteria, description and evaluation extended and

revised by EMN
0.10 2007-07-23 document consolidation, introduction added
0.11 2007-07-23 Conclusions for section 3 added
0.12 2007-07-23 Updated references in sections 2 and 3
0.13 2007-07-25 Tool criteria & description revised by EMN in section 2.

Updated references, comparison table and evaluation in
section 4.

1.0 2007-07-27 Final review version
1.1 2007-07-29 Polishing
1.2 2007-07-30 Broken references fixed

V1.2 7/30/2007 AMPLE WP3 D3.1 2 of 67

© 2007 by the AMPLE consortium Public

V1.2 7/30/2007 AMPLE WP3 D3.1 3 of 67

Table of Contents
1. Introduction .. 7
2. Criteria for Evaluation ... 8

2.1 Criteria for Variation Mechanisms .. 8
2.1.1 Concept of Variation Mechanism... 8
2.1.2 Expressive Power ... 10
2.1.3 Binding Model .. 12
2.1.4 Validation ... 13
2.1.5 Modularity .. 14
2.1.6 Other Criteria .. 16

2.2 Criteria for Tool Support ... 16
2.2.1 Concepts ... 17
2.2.2 Functionality ... 18
2.2.3 Usage .. 19

3. Existing Variation Mechanisms ... 19
3.1 Object-Oriented Mechanisms .. 19

3.1.1 Parameterization ... 20
3.1.2 Inheritance .. 21
3.1.3 Generics .. 22

3.2 Frameworks ... 22
3.3 Component Technology ... 23

3.3.1 Component-Based Architecture ... 24
3.3.2 Abstraction from Middleware .. 24
3.3.3 Abstraction from Implementation Language 25
3.3.4 Independent Deployment ... 25
3.3.5 Service-Based Composition ... 26
3.3.6 Event-Based Architectures ... 26

3.4 Aspect-Oriented Programming .. 27
3.5 Feature-Oriented Programming ... 28
3.6 Conditional Compilation ... 29
3.7 Code Generation .. 30
3.8 Interpreters ... 32
3.9 Configuration Management ... 33
3.10 Conclusion: Elements of Variation Mechanisms 34

4. Evaluation of Existing Tools ... 36
4.1 pure::variants ... 36
4.2 Gears .. 38
4.3 fmp2rsm ... 38
4.4 Modelling tools for SPL: the example openArchitectureWare 39
4.5 Evaluation .. 41

5. Existing Implementation Practices Applied at Industrial Partners 47
5.1 SAP .. 47

5.1.1 SAP NetWeaver Platform .. 47
5.1.2 SAP Exchange Infrastructure (XI) ... 49
5.1.3 Configuration and extension mechanisms in the ABAP stack 50
5.1.4 Business Rule Engines ... 56

5.2 Siemens .. 57
5.2.1 Implementation Techniques for Variability ... 57
5.2.2 Binding Variability ... 58
5.2.3 Platforms .. 58
5.2.4 Application Engineering and Product Derivation 59

© 2007 by the AMPLE consortium Public

5.2.5 Summary .. 59
5.3 HOLOS .. 60

6. Conclusion ... 62

V1.2 7/30/2007 AMPLE WP3 D3.1 4 of 67

© 2007 by the AMPLE consortium Public

Table of Figures
Figure 1. General scheme of variation mechanisms .. 8
Figure 2. Function as a variation mechanism .. 9
Figure 3. Aspect as extension mechanism ... 10
Figure 4. Configuration of aspects as a variation mechanism 10
Figure 5. Object-oriented framework .. 23
Figure 6. Component interfaces in CBSE .. 24
Figure 7. Conditional compilation ... 29
Figure 8. Conditional compilation in Java ... 30
Figure 9. SAP NetWeaver Solution Map ... 47
Figure 10. SAP XI Architecture ... 50
Figure 11. Example for an ABAP code enhancement ... 52
Figure 12. Structure for Business Add-ins ... 53
Figure 13. Structure of a Business Function Set .. 54
Figure 14. Implementation ... 60

V1.2 7/30/2007 AMPLE WP3 D3.1 5 of 67

© 2007 by the AMPLE consortium Public

Table of Tables
Table 1. Tabular comparison of the tools at the conceptual level 42
Table 2. Tabular comparison of the tools at the functional level 44
Table 3. Comparison of mechanisms in the SAP ABAP stack.................................... 54

V1.2 7/30/2007 AMPLE WP3 D3.1 6 of 67

© 2007 by the AMPLE consortium Public

1. Introduction
Software Product Lines (SPL) have been discussed for more than a decade as a
concept for managing commonalities and variations in features of software product
families. Consequentially, numerous approaches and implementation techniques
already exist for binding these feature variations in concrete products. The document
at hand surveys a range of existing implementation techniques with respect to their
support for the requirements identified in Milestones 3.1 and 3.2, representing the
different views of requirements posed by variability management for SPL on
implementation technology and practices currently in use at industrial partners.

The way of throwing light on implementation techniques in the context of Software
Product Lines is not obvious. For this reason this survey starts with the definition of
adequate criteria that can be used to analyse and compare those techniques in chapter
2. This chapter is an attempt to identify individual variation mechanisms that are used
to express variability instead of analysing entire programming languages as a whole
for their support for variability, because such languages may contain multiple features
that can be used to implement variation in program code. Due to the diversity of
mechanisms, which can be as simple as setting property values and as complex as
generating code based on templates, the mechanisms must be viewed through a
common scheme, which is described in this chapter.

Based on the criteria in chapter 2 a wide range of implementation mechanisms is
enumerated, characterized and classified in chapter 3. The analysed variation
techniques range from simple ones like parameterisation to complex ones like feature-
oriented and aspect-oriented programming. Chapter 3 also discusses methods that are
used to manage variability and create actual products in product line engineering, but
which are not directly connected to implementation in the common sense –
configuration management may be named here as an example. It should be stated here
that it is not realistic to evaluate all possible variation mechanisms, because most
mechanisms in common programming languages are related to handling variability in
some sense. Although a wide range of techniques is discussed in chapter 3 this range
has been limited to the most popular ones which do have importance in an industrial
context and which are directly related to the project in the context of SPL. In addition
it should be noted that most techniques are not mutually exclusive but can be used in
conjunction with others.

Some of the implementation techniques discussed in chapter 3 are complex enough
that the support of developers applying these techniques by dedicated tools is
desirable. Although many tools used in software development may be applied in
implementing variations in program code (i.e. a simple text editor may be used to
create source code containing the variation mechanism parameterisation), chapter 3
describes only the tools that cover a range of activities in the development of software
product lines. Several tools that fulfil this requirement and that provide development
environments for SPLs are evaluated in this chapter, because they may serve as a
background for tool development in the context of the AMPLE project, where new
approaches for tooling for SPLs are to be worked out and integration with mainstream
approaches is of importance.

Usually and naturally there is a permanent gap between the state of the art in
(academic) research and the practices applied in an industrial context. Of course the
selection of implementation techniques and the way they are applied in industry is
probably as diverse as the companies that use them. But the analysis of

V1.2 7/30/2007 AMPLE WP3 D3.1 7 of 67

© 2007 by the AMPLE consortium Public

implementation techniques applied by the industrial partners of the AMPLE project in
Chapter 5 may serve as a representative to get an insight into variation mechanisms
used in real-world developments.

This survey concentrates on existing techniques that are already (at least partially)
applied in practice. Potential extensions and combinations of technologies – with
special focus on Aspect-Oriented and Model-Driven techniques – will be discussed in
the upcoming Deliverable 3.2.

2. Criteria for Evaluation

2.1 Criteria for Variation Mechanisms
2.1.1 Concept of Variation Mechanism
It is difficult to evaluate a programming language (or some other implementation
technology) as a whole for its support for implementing variability in product lines.
Programming languages contain multiple features and allow different design patterns
to express variability, often with different qualitative properties. We will refer to the
different techniques to express variability as variation mechanisms. Instead of
analysing entire programming languages and platforms for their support for variability
we should identify and compare individual variation mechanisms.

Variation mechanisms can be very different. They can be as simple as object
properties or class inheritance, or as complex as extension with aspects or template
based generation. There are plenty of such mechanisms and in order to be able to
compare them we must view them through a common scheme. In the following we
will describe such a scheme and its constituents.

Figure 1 displays the most general structure of a variation mechanism. The primary
goal of every variation mechanism is to improve reusability. It achieves this goal by
enabling separation of reusable assets from their variations. Thus, when we talk about
a variation mechanism we must at first identify the kind of reusable assets it deals
with and the kind of variation that it supports. The variation supported by a reusable
asset can be characterized by a set of variants that can be used to specialize the
reusable asset. We will refer to such sets as variation types and their elements as
variants.

Figure 1. General scheme of variation mechanisms

V1.2 7/30/2007 AMPLE WP3 D3.1 8 of 67

© 2007 by the AMPLE consortium Public

The minimal scenario is that a variation mechanism provides facilities to instantiate
reusable assets by binding variants to reusable assets. This process can be as simple
as setting a variable value, or as complicated as performing code generation. In a
more sophisticated scenario a variation mechanism supports explicit description (or
implicit inference) of the type of variation supported by a reusable asset and is able to
validate the reusable asset and variants against the variation type. On the one hand, it
is validated if a variant belongs to the set of variants described by variation type. On
the other hand, it is validated, if for all variants that are possible for the specified
variation type of a reusable asset, generation will succeed and the result will have
certain properties.

For a better understanding of the concepts introduced so far consider the example
depicted in Figure 2. Here our variation mechanism is simply a language feature that
supports subroutines with one or more parameters. In this case our reusable assets are
pieces of code implementing subroutines. The variation type of a subroutine is
described by the list of its parameters and their types. Variants are tuples of values
that are passed as function parameters, and binding a variant to a subroutine generates
a subroutine call with the appropriate parameter values. The two validation processes
correspond to type checking on caller side (checks parameters against parameter
types) and type checking on callee side (checks subroutine implementation against
parameter types).

Figure 2. Function as a variation mechanism

Note that the same language mechanisms can be considered from different
perspectives depending on what is to be reused. For example, we can consider AOP as
technology to extend a reusable code base with unanticipated variations (Figure 3).
Then the base code is a reusable asset and an aspect describes the variant. In this case
the set of possible variants is not specified, and thus no validation is possible.

V1.2 7/30/2007 AMPLE WP3 D3.1 9 of 67

© 2007 by the AMPLE consortium Public

Figure 3. Aspect as extension mechanism

In another scenario (Figure 4) we consider that our product line contains both the base
code and a set of aspects that advise this code. In instances of the product line we can
select a subset of the aspects. From this perspective our reusable assets are both the
base code and the aspects. The variation type is the power set of the set of available
aspects. The variation type can additionally impose various constraints on this power
set, for example by specifying which aspects are mutually exclusive. We could
validate if a given variant (selection of aspects) fulfils the constraints, and if for every
allowed selection of aspects the weaver will produce a valid program.

Figure 4. Configuration of aspects as a variation mechanism

2.1.2 Expressive Power
In this section, we will talk about expressive power in a relatively narrow sense: as a
characterization of what kind of variation can be expressed by a variation mechanism.
In a broader sense expressive power would encompass the issues of further sections,
such as modularization possibilities and instantiation model.

First of all we have to identify the object of variation, i.e. the type of the entities
produced by the variation mechanism. This characteristic influences all other aspects
of the technology. The type of the produced entities can be functions, data
structures, objects, modules, collaborations, programs or arbitrary artefacts.

V1.2 7/30/2007 AMPLE WP3 D3.1 10 of 67

© 2007 by the AMPLE consortium Public

The essence of a variation mechanism is a transformation that takes reusable assets
and a description of the variant as input. Thus the expressive power strongly depends
on the types of the transformations that we can express:

• Parameterization. Reusable assets declare parameters that are used at
different places of the assets and the binding process transforms the assets by
replacing these slots with given values. There are a large number of
mechanisms that use this kind of transformation from simple parameterized
routines to conditional compilation. Technically, mechanisms can be
implemented in different ways, for example by direct substitution or by using
substitution environments.

Substitution mechanisms can vary by the constraints of how and where the
parameters can be used, for example generic Eiffel [25] classes cannot
inherit from their generic parameter, but this is possible in C++ templates. In
C++ conditional compilation the developer can describe only conditionals
over the parameters, while in template languages such as Xpand [26] the
developer can describe iteration over the parameters.

The expressivity of parameterization also depends on the supported types of
parameter values:

o Predefined types. Usually simple scalar types and strings. This is
typical in various configuration languages.

o Data structures. Constructors to build aggregate types, such as arrays
or records.

o Functions. Functions can be passed as values.

o Objects. A variant is described by an object, which contains data,
operations and references to other objects. Object structures are often
used to define models.

Further criteria for evaluation of parameterization mechanisms are:

o Support for default parameters

o Support for partial binding of parameters

• Refinement. Variation can be expressed as a delta to the reusable item.
Variation mechanisms can differ by the ways in which they can modify the
reusable asset:

o Extension. A transformation can insert new items in the reusable asset.
For example AO languages that support only before and after advice
can insert new behaviour in the advised code. Another example is
Open Classes that allow extending existing classes with new fields and
methods.

o Overriding. A transformation can override parts of the reusable asset.
An example of overriding is AO languages with support for around
advice. Note that in case of class inheritance we can have both
parameterization and overriding.

• Refinement mechanisms can further differ by granularity of refinement, i.e.
the positions where new items can be inserted and granularity of parts that can

V1.2 7/30/2007 AMPLE WP3 D3.1 11 of 67

© 2007 by the AMPLE consortium Public

be overridden. In AOP granularity is usually characterized by a joinpoint
model describing the execution points that can be advised.

• An important innovation of AO languages with respect to extension
mechanisms is the possibility to quantify over the points that have to be
extended in an analogous way. The quantification possibilities can, of course,
be different and can again be evaluated by multiple criteria.

• Composition. Reusable assets describe parts of the entity to be generated and
the variation describes how the parts should be composed. There are different
types of composition:

o Merging. The selected components are merged together. Typical
examples are the technologies supporting layered decomposition, such
as mixin layers [28], Hyper/J [27], virtual classes with mixin
composition [30][29]. In fact, this kind of composition can be derived
from almost every refinement mechanism. For example, for class
inheritance we can consider multiple inheritance or mixin-based
inheritance.

Merging techniques can differ by the granularity of composition, e.g.
some of them can compose methods, others not.

An important issue is how to deal with ambiguities, for example when
there are alternative implementations for the same method, or when
there are multiple aspects advising the same joinpoint. Resolution of
ambiguities can be non-deterministic, automatic or manual. The
granularity of resolution may vary.

o Assembly. The components are assembled by writing glue code that
connects their explicitly exposed interfaces.

o Event-based composition. Components are implicitly composed in an
event based system by publishing their events and listening to events
published by some other components.

o Contribution. The composed components contribute to some common
results of computation. A typical scenario is that components are
registered in a list and expose a common interface. Some manager
object calls the components in the list and composes their results. For
example, components can contribute to building the menu of the main
window. This type of component composition is often used to support
plug-ins.

• Arbitrary transformation. This is a category for very powerful variation
mechanisms that do not have clear constraints on the type of transformation
that they can do.

2.1.3 Binding Model
The binding time of a binding defines the time when a variant is bound to a reusable
asset. There are different classifications of binding time. However, for evaluating
variation mechanism we are only interested in the technical aspect of binding times,
thus, for example, a difference between development time and installation time is not
interesting if technically the same kind of binding is done.

So from a technical perspective we can identify the following kinds of binding time:

V1.2 7/30/2007 AMPLE WP3 D3.1 12 of 67

© 2007 by the AMPLE consortium Public

• Compile time (static). The variant is bound before running the software.

• Run time (dynamic). The variant is bound in a running system. The runtime
binding can further differ by the possibility to change the binding during the
lifetime of the varying object.

Another characteristic is the availability time of the variations, which tells at what
point varying artefacts must be available. The artefacts can be available either at
compile time or at runtime. In the latter case, it is also possible to change the
availability of artefacts during runtime.

We need to differentiate between binding and availability time, because we can have
situations where binding takes place at runtime, but the variations must be already
available at compile time. For example, in the Strategy pattern [16] we can
dynamically decide which strategy we choose, but our choice is still limited by the set
of strategies defined at compile time. So we have binding at runtime, but compile time
availability. To achieve runtime availability in this scenario we must use some
dynamic loading technology.

Another important aspect is the scope of binding. Since a reusable asset can be bound
to different variants, the variation mechanism can differ by supporting the coexistence
of different bindings of the same asset. For example, if we encode variation by a
normal class field, we can bind a variant for each object of the class, but if we use a
static class field instead, we can only bind one variant for all the objects of that class
in the application. There can be different scopes of binding: program, thread, object,
module, class, component, collaboration, etc.

2.1.4 Validation
In section 2.1.2 we showed that there are big differences in the expressivity of
variation mechanisms. The question is then why not to use the ones that allow
expressing arbitrary transformations. The problem with very expressive mechanisms
is that it is difficult to check automatically (and often manually) if the transformation
will succeed and produce the desired result. As was already mentioned, there are two
kinds of validation: the validation of a variant against a variation type and the
validation of a reusable asset against a variation type.

In any case, validation needs information about the variation type. First we can
categorize the variation techniques by the availability of the variation type:

• Not available. In some variation mechanisms the variation type is neither
inferred nor explicitly declared.

• Inferred. The variation type is automatically inferred from the reusable asset.
Note, that the possibility to infer the variation type implies validation of the
reusable asset. The classical example here is type inference in various
programming languages. A less obvious example is inference of the protected
interface of a class, which is sufficient to check validity of subclasses.

• Explicitly specified. The variation type supported by the reusable asset is
explicitly declared.

Specifications of variation type can differ by their precision. If we describe variations
as values then the possible precision of describing the intended type of values depends
on the power of the type system. For example, in a simple object-oriented language
the type of a variable can only specify the class of the object referenced by the
variable, while in a more sophisticated system we could also specify the types of the

V1.2 7/30/2007 AMPLE WP3 D3.1 13 of 67

© 2007 by the AMPLE consortium Public

fields of that object. When describing object interfaces we can specify only their
signature or also some further semantic properties. When describing meta-models we
can limit ourselves to describing their abstract syntax or we can also describe further
constraints on the model.

Availability of a variation type, specified or inferred, normally implies that it is
checked if variants comply with this type.

However, for validating reusable assets it is not always the case. In a lot of cases the
validation is not done at all, or is partial in the sense that it does not guarantee
successful binding of the reusable asset with all the variants that are possible for the
specification of the variation type. The types of partial validations can be very
different. For example, in template languages we may validate the generator
instructions, but not the code to be generated, or we may validate only if this code is
syntactically correct.

In some cases complete validation may be impossible, because variation type is not
specified precisely enough. For example, if we have a feature model description
language that cannot define dependencies or conflicts between features we are not
able to specify all constraints that are necessary to specify which selection of features
will result in a valid products.

A lot of variation mechanisms are able not only to validate success of binding of the
reusable asset with any of the supported variants, but also to guarantee further
properties of the binding result. For example, a typical guarantee of class
inheritance is that the signature of a class subsumes the signature of its superclass. A
lot of variation mechanisms allow one to describe the type of the reusable asset and
can check if the result of the binding will always have this type. These possibilities
again depend on the power of the type system.

The mechanisms that do not perform validation against variation type must validate
variants directly against reusable assets. If such validation is done during binding,
there is no sense to distinguish the validation from the binding. However, a variation
mechanism with runtime binding can additionally support static validation of
variants against reusable assets.

2.1.5 Modularity
By modularity we understand separation of concerns. There can be however different
levels of separation:

• Structural separation. Concerns are separated into different modules, but
there are no clear relationships between modules.

• Explicit dependencies. The dependencies between separated concerns are
explicitly declared. Internal consistency of a concern can be modularly
checked.

• Explicit interfaces/encapsulation. Modules expose explicit interfaces and
hide the remaining details from other modules. As a result, the total
complexity is reduced, internals can be changed without influencing other
modules.

• Segregated interfaces. A module can implement multiple interfaces, which
are dedicated to different groups of clients. This makes clients of the module
more stable, because they depend only upon the interface that they need.

V1.2 7/30/2007 AMPLE WP3 D3.1 14 of 67

© 2007 by the AMPLE consortium Public

• Independent structure. There is no preplanned alignment between the client
of a module and the module. They are integrated afterwards.

The higher levels of separation primarily increase the stability and reusability of the
modularized concerns, but require more development effort and in some cases may
prohibit unanticipated variation.

Another important general criterion for evaluating modularization possibilities is the
granularity (or flexibility) of separation, e.g. modules can be used to segregate
individual classes, methods, or even intra-method constructs

A primary modularization characteristic is the dependency of reusable code on
variation. Here we can identify the following categories:

• Unaware. Reusable code is completely unaware of the variation. This is a
typical case when varying code simply uses the reusable code or extends it.

• Stable abstraction. The dependency of reusable code on the variation is
described by a stable abstraction. The reusable code uses this abstraction
without differentiating between variants. This is for example achieved by
subtype polymorphism.

• Inlined variation. The reusable code differentiates between the variants and
this differentiation is done simply in-place using conditional structures. This
characteristic applies to variation management with switch/case statements in
Java and for conditional compilation in C/C++.

• Modularized variants. The reusable code must differentiate between the
variants, but the pieces of code that have different dependencies on variation
are separated from each other, and the correct piece is selected by some static
or dynamic dispatch mechanism.

The separation method depends on the type of transformation. In case of
parameterization, the separation is based on dispatch. In case of compositional
variation, it is important to separate the components. In both cases we should
evaluate the level and granularity of separation.

In case of parameterized variation, we should evaluate the expressivity of dispatch:
if dispatch is based on subtype relation or on predicate dispatch [63]. In the first case,
dispatch expressivity depends on the expressivity of the type system.

We must also evaluate the possibility of decomposition of reusable assets, because it
can be that a variation mechanism constrains modularization possibilities. A typical
example of such a restriction is the expression problem [32][33]. For example, if
variation is described by an inheritance hierarchy in Java, all operations, whose
implementation depends on these classes, must be defined in the modules containing
these classes, while MultiJava [34] allows defining such operations in separate
modules.

The possibility of decomposition of variation type descriptions may also be an
important issue if these descriptions are large enough. For example, one technology
may require that a feature model must be defined as a whole, while another
technology may allow decomposing the feature model into subtrees even more
flexibly.

V1.2 7/30/2007 AMPLE WP3 D3.1 15 of 67

© 2007 by the AMPLE consortium Public

2.1.6 Other Criteria
The convenience of using variation mechanism is an important criterion in SPL
engineering, because configuration of SPL instances sometimes is done by people less
experienced in software engineering, for example during deployment. To evaluate the
convenience we can evaluate:

• the complexity of the language,

• the amount of infrastructural code to support the mechanism compared to a
fixed binding between the reusable asset and the variant,

• the availability of graphical tools,

• the conceptual and optical distance between the input assets and the
binding results.

The last point is also tightly related to traceability. Traceability is understood in the
sense of the ability to match the structure of the binding (generation) result against the
source assets. Traceability is very important for managing changes and debugging.

The efficiency of a variation mechanism can be evaluated through the following
criteria:

• Runtime performance overhead in terms of time and memory

• Amount of generated code

• Performance of transformation and validation steps

• Support for incremental generation

2.2 Criteria for Tool Support
Since SPLs are concerned with software artefacts relevant to all phases of the
software lifecycle and at all abstraction level, almost any tool relevant for software
development may, in principle, be used in the context of SPLs. In order to define a
significant set of criteria, we have delimited the set of considered tools by considering
mainly tools that have been explicitly developed for SPL engineering; we have,
however, also taken into account features relevant to SPLs but present in general tool
suites for software modelling.

SPLs require the management of variability over the whole development process,
involving, in particular, software artefacts described at a large range of different
abstraction levels. Hence, tools for product development using SPLs should support
an integrated development process that allows creating software artefacts, ensuring
properties, and generating tests as well as product quality level code.

In this section we present the criteria used to evaluate existing tools for SPLs with
respect to their support for integration of the development process. The focus lies on
the core concepts supported by the tools, coverage of development activities over the
development lifecycle and integration opportunities with other tools that are
potentially relevant to the development of SPLs. The overall set of criteria we
consider in this section includes, partially with adaptations, the set of criteria
introduced in the previous section. We have made some adaptations in order to take
into account the fact that some of the previously presented criteria are not applicable
to tools or at least have a different range of possible options. In Chapter 4 we evaluate
four different tools (three major SPL specific tools and a general-purpose tool for
model-driven engineering) with respect to the criteria presented here.
V1.2 7/30/2007 AMPLE WP3 D3.1 16 of 67

© 2007 by the AMPLE consortium Public

We consider three main groups of criteria: (i) the underlying conceptual and technical
concepts, (ii) the extent to which a tool covers the development process and different
target implementation infrastructures (such as a component model on top of which the
SPL is implemented) and (iii) usage-related parameters, such as the availability of the
tool and how it may interoperate with other tools.

2.2.1 Concepts
What are the abstract and technical concepts underlying the tool?

1. Variation mechanisms: the techniques used by a tool to express variability.

• Variation management principle: The general way the variability is
managed.

• Reusable Assets: the kind of reusable assets that the variation mechanism deal
with, e.g. tools may deal with any kind of asset in a generic way, or provide
support for more specific assets such as definition of requirements, language-
specific source code, etc.

• Variation types: the set of variants that can be used to specialize the reusable
assets, e.g. files, requirements, source code structures, etc.

• Variants: the concrete elements of a variation type that can be selected to
specialize the reusable assets, e.g. concrete files, specific requirements, etc.

2. Expressive power
1. Transformation type: expresses the kind of transformations on assets, e.g.

tools supporting general assets may support transformations such as file
generation, text substitution, etc.; tools supporting specific assets may support
adding or removing requirements, or language-specific transformations such
as refinement, composition or arbitrary transformations, etc.

2. Granularity: the smaller unit that can be modified in an asset, e.g. the
granularity for tools supporting generic asset may be files, blocks of text, etc.;
the granularity for tools supporting specific assets may be requirements,
source code structures, components or business logic.

3. Binding model

• Binding Time: the time when the binding between assets takes place.

• Availability time: the time when varying artefacts must be available, e.g.
some tools may need variants to be completely available before binding,
whereas other tools may need variants to be just partially available, and they
are completed in the binding.

• Scope of binding: the scope, in term of a software artefact, where the binding
applies.

• Validation: how tools ensure the correctness of the variation mechanism

• Availability of variation types: existence of variation types that allows
validating variants (variant complies with its type). Variation types may be not
available, inferred or explicitly specified, e.g. the variation type can be
explicitly defined as a file, and then it has to be checked that all the variants
are effectively files.

V1.2 7/30/2007 AMPLE WP3 D3.1 17 of 67

© 2007 by the AMPLE consortium Public

• Validation of binding: the way to ensure that asset instances are correct. It is
related to the correct selection of features imposed by possible existing
constraints. This validation can be possible or not possible.

4. Modularity

• Structural separation: the structural mechanisms that the tool provides to
separate concerns, e.g. a tool can provide a notion of modules, and/or ways of
grouping features.

• Explicit dependencies: tells how dependencies between modules are
declared, e.g. some tools can provide explicit dependency declarations,
whereas for other tools the dependencies can be implicitly inferred.

• Segregated interfaces: tells how a module or a complete asset can be
instantiated for different groups of clients.

• Asset-variation dependency: the dependency of reusable code on variation,
e.g. an asset in a tool can be defined without depending on the different
variants for the varying part of the asset.

• Decomposition of assets: tells how the variation mechanism of a tool allows
an asset to be decomposed in different parts that can be treated independently,
e.g. the variation mechanism of some tools could restrict the decomposition of
an asset, whereas in others such a separation could be always possible.

• Decomposition of variation descriptions: tells how the descriptions of the
variation can be decomposed.

2.2.2 Functionality
What are the main functionalities provided by the tool in terms of SPL and product
lifecycle management?

1. Process coverage

• Definition of SPL: feature models, DSL

• Analysis/validation of SPL (domain space): Are there any specific
functionality for domain space analysis or validation, for example analysis of
feature models, domain requirement, SPL architecture or reusable assets, etc.?

• Analysis/validation of products (application space): Are there any specific
functionality for application space analysis or validation, for example
validation of product configuration, product requirements, product
architecture, product assembly, etc.?

• Product assembly: Are there any specific functionality to create a product by
assembling assets?

• Product testing: Are there any specific functionality to test products?

• Product execution: Is there a specific support for product execution?

• Product maintenance: Are there any specific functionality for product
debugging or evolution?

• Support for specific application domains: Are there any specific
functionality for one or more specific application domains?

2. Expressiveness of feature model editors
V1.2 7/30/2007 AMPLE WP3 D3.1 18 of 67

© 2007 by the AMPLE consortium Public

• Hierarchy of features: boolean

• Feature selection: one-of, more-of, optional, mandatory

• Support for features labelled with values: boolean

• Assertions on feature values: boolean

• Representation of features: graphical, textual

• Multiple feature models: boolean

• Feature-model dependencies: boolean

3. Product engineering

• Support for managing feature-model instances: boolean

• Support for product instantiation: boolean

• Execution environment: boolean

• Editors to manage dependencies between feature models: boolean

• Code generator: boolean

• Implementation targets: Are there one or more specific programming
languages as implementation target of the tool or is it a technology-agnostic
tool?

2.2.3 Usage
All criteria related to the usage of the tool.

• Availability: free, licensed, etc.

• Configurability: Is the tool configurable for different tasks?

• Extensibility: is it possible to extend the tool and by what means?

• Interoperability: how does the tool interoperate with other tools? Does it
support the use of different file formats?

• Usability: Is the tool easily usable and in which context?

3. Existing Variation Mechanisms
This section discusses approaches for implementation of variability in software
product lines and evaluates them according to the criteria of Section 2.1. It is not
realistic to evaluate all possible variation mechanisms, because most mechanisms in
programming languages and other implementation technology deal with some kind of
variability. Therefore, we will evaluate the mechanisms that are most popular in
industrial applications and the mechanisms that are directly relevant to the project,
such as aspect-oriented programming and code generation. It should also be noted that
the approaches are not mutually exclusive of one another. For example, some form of
configuration management is generally used in any real world approach while many
component-based approaches may use object-oriented techniques at their core.

3.1 Object-Oriented Mechanisms
Object-oriented programming languages such as C++ and Java are at the core of the
mainstream implementation technology. In this section we evaluate the basic variation

V1.2 7/30/2007 AMPLE WP3 D3.1 19 of 67

© 2007 by the AMPLE consortium Public

mechanisms that are available in such languages. Since Java is selected as base
implementation language in the project, we refer to object-oriented mechanisms as
they are implemented in Java, unless noted differently.

3.1.1 Parameterization
The most common variation mechanisms are based on parameterization.
Parameterization in object-oriented languages is available for different scopes:
methods are parameterized by their explicit parameters; objects are parameterized by
the values of their fields and constructor parameters; parameterization of classes and
packages is possible by setting values of static class fields. In this way we can
parameterize reusable assets of different size: methods, classes, and packages.

The types of parameters in object-oriented languages are usually object types, which
can describe primitive types as well as complicated models. The variation type is
normally described by defining interfaces, and variants are the classes implementing
these interfaces. Since functions can be modelled as objects, parameterization by
functions is also possible, but usually requires a significant amount of infrastructural
code.

By giving initial values to fields and by setting them after object construction we
achieve the effects of default parameters and their partial binding. This is, however,
not possible for method parameters.

The parameters are bound at runtime. The field values can be freely changed after the
binding. The classes implementing the variants must normally be available at compile
time. Nevertheless, because of dynamic class loading and reflection in Java it is
possible to postpone availability of variants until runtime.

Statically typed object-oriented languages such as Java provide complete static
validation of both reusable assets against the declared parameter types as well as
validation of the actual parameter values. Usually only the signature of the parameters
is specified. Languages such as Eiffel [25] allow definition of semantic properties of
the parameters in form of pre- and post-conditions, but they are not validated
statically.

Polymorphism and late binding enable a quite good level of separation between
reusable and varying functionality: The reusable assets use the varying functionality
over stable abstraction defined by the interfaces of their parameters. The
implementations of different variants are separated from each other, since they are
defined in different classes.

The latter properties characterize the major qualitative advantage of object-oriented
parameterization methods over traditional procedural programming, where variations
are usually handled by conditional statements. Besides, dispatch over virtual tables
makes the object-oriented selection mechanism more efficient than selection using
conditionals.

The disadvantages of parameterization as variation mechanism are preplanning and
infrastructural code. The variation possibility should be prepared in advance by
defining necessary parameters and interfaces. For parameterization using object fields
we must additionally define constructors and setter methods.

Object-oriented languages impose limitations on decomposition of the definition of
variation type and implementation of variant. All the code that depends on a variant
must be defined in the module/class that represents this variant. It is not possible to
distribute the variant-dependent code in multiple modules.
V1.2 7/30/2007 AMPLE WP3 D3.1 20 of 67

© 2007 by the AMPLE consortium Public

As previously mentioned, the object-oriented mechanisms support parameterization
with method, class, and package scope. However, there is no explicit support for
parameterization at the dynamic scopes larger than a single object. If we want that a
collaboration of objects share a parameter value, we must implement infrastructure
that passes this value explicitly from object to object.

Design patterns, such as Singleton, Strategy, State, Command, Composite [16],
describe special cases of object-oriented parameterization. Singleton describes the
case of parameterization on the scope of an entire program. Strategy, State, Command
and Composite describes parameterization over object fields in order to deal with
variation in different situations: Strategy describes variation of an algorithm, State –
variation of object state, Command – variation of an action to be performed,
Composite – variation of parts of a data structure.

3.1.2 Inheritance
In class-based languages, such as Java, inheritance is necessary for achieving
(inclusion) polymorphism and late binding, the advantages of which were discussed in
the previous section. In this section we will evaluate another usage of inheritance,
which is called implementation inheritance, and is the only form of refinement
directly supported in object-oriented languages.

With implementation inheritance, the reusable functionality is captured by a base
class and the varying functionality by its subclasses. Since a class can have multiple
subclasses, it is possible to define multiple variations of the same base functionality.
The extensions can override the reusable functionality at the granularity of methods.

There is no explicit description of variation type. The extensions are validated
statically against their base. The possibility of decomposition of the reusable and
varying functionality depends on the support for multiple inheritance. In a single
inheritance language, such as Java, reusable and varying functionality can be
organized only along a strict linear hierarchy.

The main advantage of inheritance is the possibility of unanticipated variation, which
in this case is known as the Open-Closed Principle [35], because the base classes are
unaware of their extensions. Besides, inheritance requires a very minimal amount of
infrastructural code and can be very efficiently implemented.

The major disadvantage is a low level of separation (explicit dependency) between the
varying and the reusable code, which makes evolution of the reusable code
problematic. The problem of lack of contract between a class and its subclasses is also
known as the Fragile Base Class Problem [15].

Besides, inheritance is limited to static variation. A solution for dynamic refinements
in object-oriented languages is described by the Decorator design pattern [16]. The
problem is that this solution invalidates some of the advantages of inheritance: it
requires a lot of infrastructural code and is much less efficient.

Some of the problems of inheritance as available in mainstream object-oriented
languages such as C++ and Java are alleviated by mixin-based inheritance [31].
Mixins are classes, which cannot be instantiated, that are parameterised by their
superclass. Unlike standard subclasses, mixins are explicitly abstracted from their
superclass. This makes them more stable and reusable.

V1.2 7/30/2007 AMPLE WP3 D3.1 21 of 67

© 2007 by the AMPLE consortium Public

Mixins can also be used to express a simple form of compositional variability: we can
produce different variations of a class by combining different lists of mixins. A
similar effect can be achieved with multiple inheritance.

3.1.3 Generics
Generics is a mechanism for parameterization of classes by types. The well-known
languages supporting generics are Java [37] and Eiffel [25]. A typical application of
generics is the implementation of collection classes that can be used with different
element types.

The main difference between generics and simple parameterization is that parameters
are not used in expressions, but in types. It is a static variation mechanism. A
variation type is expressed by constraints on the parameters types. Java and Eiffel
provide an efficient implementation of generics and a complete modular validation of
generic classes.

C++ templates are an alternative solution for parameterization of classes by types.
The mechanism is semantically more powerful than generics because it additionally
enables dispatch of a generic class by its parameters by a mechanism called template
specialization: beside generic implementation of a class, the developer can provide its
specializations for specific parameter types. The disadvantages of C++ templates are a
lack of modular validation of template classes and duplication of generated code.

3.2 Frameworks
Johnson and Foote describe an object-oriented framework as “… a set of classes that
embodies an abstract design for solutions to a family of related problems, and
supports reuse at a larger granularity than classes.” [13] The major characteristic of
object-oriented frameworks that distinguishes them from simple class libraries is that
the control flow is managed by the framework rather than by the application classes.
Application specific behaviour is triggered at predetermined extension points or “hot
spots” in the framework.

Extension points in object-oriented frameworks are implemented using inheritance
and late binding. The varying code is defined in subclasses of the abstract classes of
the framework, and is used in a polymorphic way in the framework. The Observer
design pattern [16] describes a solution supporting multiple variations at the same
extension point. In procedural languages such as C the extension points are usually
implemented using call-back functions.

framework corevariable part

class

abstract class

composition

extends

Key

framework corevariable part

class

abstract class

composition

extends

Key

V1.2 7/30/2007 AMPLE WP3 D3.1 22 of 67

© 2007 by the AMPLE consortium Public

Figure 5. Object-oriented framework

Frameworks are a mainstream solution for large-scale reuse with explicit support for
variability. In this case the framework is the reusable asset, and the variants are the
application-specific subclasses of the classes of the framework. Frameworks combine
both parameterization and refinement, because they are explicitly parameterized by
their extension points. On the other hand the framework classes can be extended by
inheritance, also in unanticipated ways. Refinements are not possible in so-called
black-box frameworks.

The variations are bound to the framework at runtime, and runtime availability of the
variants can be achieved using reflection mechanisms for class loading. The
framework is separated from its variations by explicit abstractions. Extension of the
classes of the framework can lead to tight dependency of varying code on the
framework. However, it is not the case when the framework is used only in a
preplanned way over explicit abstractions.

Frameworks are well suited only for preplanned variations that must be supported by
an infrastructure prepared for this purpose. One of the problems with frameworks is
the size and complexity of the infrastructural code to support variations. If a variation
is of crosscutting nature, the infrastructural code to support this variation will be
scattered in multiple places across the framework.

Another big problem is that frameworks tend to be monolithic. Usually the framework
and the application code are separated by strict abstractions, but there are tight
dependencies between internal parts of the framework. The consequence is that the
framework must always be used as whole even if an application needs only a part of
its functionality.

Since the extension points of the frameworks are described by interfaces, each
variation must be defined in a single class. Such a mechanism is not well suited to
describe more complicated variations that are implemented by multiple classes. This
problem is addressed by the Abstract Factory design pattern [16], but this pattern
requires additional infrastructural code and has problems with extensibility. Another
problem is that the type systems of object-oriented languages are not powerful enough
to express covariant dependencies between the classes that implement the variations
with the consequence that the covariant classes must use type casts to access the
functionality of each other.

Usage of multiple frameworks in an application poses further problems, which are
discussed in detail in [38].

3.3 Component Technology
Component-based software engineering (CBSE) [14] refers to the development of
software systems from reusable components. There is no general consensus on the
definition of the concept of component. In the broadest sense a component is any
reusable piece of software with a well-defined interface. From this perspective we can
consider modules and classes in programming languages as components. However,
other definitions impose further requirements on components: they must be
independently deployable, abstracted from their dependencies on other components,
abstracted from middleware and so on. In the following we will discuss different
aspects of component technology with the focus on their support for variability.

V1.2 7/30/2007 AMPLE WP3 D3.1 23 of 67

© 2007 by the AMPLE consortium Public

3.3.1 Component-Based Architecture
The basic principle of component-based architecture is decomposition of software
into smaller parts that communicate over explicitly defined interfaces. The
components can be further hierarchically decomposed into smaller components. In
order to avoid tight dependencies, components do not instantiate each other directly
but rather declare their dependencies in form of expected interfaces. The interfaces
implemented by the component itself are then called provided interfaces. The
composition of components is performed on a higher level by linking expected
interfaces to compatible provided interfaces. The components can be composed using
a conventional programming language or an architecture description language (ADL),
which can express the composition more concisely and visualize it. An overview of
ADLs is given in [1].

ComponentRequires ProvidesComponentRequires Provides

Figure 6. Component interfaces in CBSE

Component-based architectures express compositional variability. The components
are reusable assets and variants are different compositions of components. The
provided and expected interfaces of components define constraints for composition
and thus they can be seen as specification of variation type.

The main advantage of component-based architectures is their strong support for
modularity. Components are separated from each other at the level of segregated
interfaces. The components as well as their compositions are validated in a modular
way, which also enables good support for separate compilation.

The problem with component-based architectures is their assumption that software
can be easily decomposed in a strictly hierarchical way. Components are usually
implemented as classes or as groups of classes, which means that they cannot cross
class boundaries. A hierarchical architecture also implies that subsystems that are
defined as compositions of components are responsible for completely defining
interactions between these components. The problem is that variations in product line
are often defined in terms of features that cross boundaries of classes and their
compositions.

Component-based composition is not suitable for expressing unanticipated variability.
It is difficult to extend components and their compositions with new functionality or
to integrate components in unanticipated ways.

3.3.2 Abstraction from Middleware
One of the primary goals of the popular component frameworks such as J2EE [40]
and .NET [41] is separation of business logic from various non-functional concerns,
such as distribution, persistence, transaction management, and security. These

V1.2 7/30/2007 AMPLE WP3 D3.1 24 of 67

© 2007 by the AMPLE consortium Public

concerns are then specified concisely using domain-specific abstractions, which leads
to significant reduction of code size and complexity.

Separation of non-functional concerns also enables their independent variation. For
example, separation of the distribution concern enables independent variation of
physical architecture of the system. Complete separation of some other concerns such
as persistence or transactions appeared to be less useful in practice. Therefore, these
concerns are often specified in class annotations. This means that they are not
syntactically separated from the business logic. Nevertheless, such a solution still
supports variation of implementation of non-functional concerns. For example, if
persistence and transactional logic of a class is specified by standardized J2EE
annotations, this class can be used in different application frameworks. This means
that declarative specifications of non-functional concerns enable variation of the
platform.

Technically, declarative specifications of non-functional concerns are implemented
using the approaches for implementing DSLs that are discussed in Section 3.7 and
Section 3.8.

3.3.3 Abstraction from Implementation Language
An interesting feature of the CORBA [42], .NET [41] and COM [43] frameworks is
support for multiple programming languages. A software system can be built of
components implemented in multiple programming languages. In CORBA and COM
this is enabled by language independent interface specifications, while .NET achieves
this by translating all specific languages to a common intermediate language. From
the perspective of variability management, these technologies enable composition of
reusable assets that are implemented in different programming languages.

3.3.4 Independent Deployment
Using programming languages, such as C++, a change in one module of an
application usually requires recompilation of the modules that use it. Besides, there is
no possibility to install an application in parts or to replace parts of an already
installed application.

Such a situation is not acceptable from the perspective of component-based
development, because components can be developed independently from each other
by different vendors or teams. It may be necessary to upgrade components of a
software system independently of each other or to install new components providing
new functionality. From the perspective of variation management independent
deployment is interesting, because the components that implement different variations
can be added to the system independently from each other. Since the set of available
components is known only at runtime, independent component deployment enables
runtime availability of variations.

Independent deployment of components is enabled by technologies supporting some
form of dynamic linking and naming service. For example, dynamic deployment of
COM components is based on dynamically linked libraries (DLL) and entries in
Windows Registry that relate component names to corresponding DLLs.

V1.2 7/30/2007 AMPLE WP3 D3.1 25 of 67

Since Java links classes at load time, it is possible to replace individual Java classes
and libraries in an installed system. OSGi [44] is a Java-based framework that
supports a more controlled form of dynamic loading. The components in OSGi are
bundles of Java classes and other artefacts that declare dependencies on other bundles.
OSGi not only loads and links the bundles at load time, but also provide facilities to
install, start, stop, update and uninstall them in a running system.

© 2007 by the AMPLE consortium Public

3.3.5 Service-Based Composition
So far we discussed explicit composition of components, in which the developer must
explicitly link provided and expected interfaces of individual components. In a lot of
cases this matching can be done automatically. The interfaces correspond to the
services that are provided by or needed for the components, and a component that
needs some service can be automatically linked to a component that provides that
service. Technically, this can be achieved either by service registries or by
dependency injection [45].

An example of service registry mechanism can be found in the OSGi framework. The
framework maintains a registry, which maps services (identified by corresponding
interfaces) to objects that provide them. An object that needs some service can use the
registry to retrieve the list of its providers. Service providers can be registered and
unregistered at runtime. The cases when there is one provider or there are multiple
providers for certain service must be handled by the users of the service.

In the dependency injection approach each component belongs to some container,
which is responsible for finding and passing the necessary services to the component.
There are at least 3 different dependency injection techniques: interface injection,
constructor injection, and setter injection. These techniques differ in the way the
container passes services to the component. For example, in setter injection a class
declares a setter method for each service that it needs. Each setter has a parameter of a
type that identifies the service. Dependency injection is implemented in Pico
Container [46] and in the Spring framework [47].

Dependency injection requires much less infrastructural code than the service registry
approach, but service registries can be useful when more flexibility is needed, because
it supports multiple providers for the same service and possibility to register and
unregister them at any time.

Service-based composition in general implements a somewhat different type of
variation than explicit component composition. The variant in this case is described as
a set of selected components, while their wiring is determined automatically. Thus it
is less expressive than explicit definition of the wiring, but on the other hand it is
much more concise in the cases when the expressivity is sufficient.

The automated composition is also less reliable, because there is no static validation
that guarantees that all components will be connected to all services that they need.
However, by sacrificing some static safety service-based composition provides more
flexibility for runtime variation of component composition.

3.3.6 Event-Based Architectures
The behaviour of object-oriented architectures is often seen as interactions in which
objects pass messages (or events) to each other. However, there are certain constraints
related to this form of interaction: the message is sent from one sender to one receiver,
the sender must have a reference to the receiver, the message is sent synchronously.
The primary goal of event-based architectures is to enable more flexible patterns of
communication between components: multiple senders and receivers, event filtering
by various conditions, asynchronous communication, etc.

V1.2 7/30/2007 AMPLE WP3 D3.1 26 of 67

As in service-based composition, the components are not explicitly linked to each
other. Instead they are implicitly linked over the events that they produce and
consume. Also, analogously to service-based composition, the variant is described by
a set of selected components, while component connections are determined
automatically. The major difference is that service-based composition is based on

© 2007 by the AMPLE consortium Public

synchronous calls between two components, while in event architectures the calls can
be asynchronous and an event can be consumed by multiple components. Thus, event-
based architectures provide more expressivity for defining connections between
components.

3.4 Aspect-Oriented Programming
Aspect-oriented programming addresses the problem of separation of scattered and
tangled concerns. Aspect-oriented languages enable modularization of functionality
that crosscuts boundaries of classes, and provide quantification mechanisms for
concise expression of the relationship between the crosscutting and the base
functionality. In this evaluation we will use AspectJ [48] and CaesarJ [29] as
reference aspect-oriented languages, because AspectJ is the de facto standard in
industry, and CaesarJ is a language developed by one of the project partners.

From the perspective of variability management, aspect-oriented languages are
interesting, because they enable separation of crosscutting varying functionality from
the rest of the program. The transformation supported by aspects is refinement with
possibility of overriding. The overriding is possible only in the aspect-oriented
languages that support so called around advices.

The granularity of extension supported by an aspect-oriented language depends on its
jointpoint model, because joinpoints are the places where aspects can attach new
functionality. AspectJ and CaesarJ support joinpoints that cross boundaries of
methods, e.g. method calls and field accesses. In this way extensions at very fine level
of granularity are supported. AspectJ also supports introductions that enable extension
of the static structure of existing classes. They can introduce new fields, new methods
and inheritance relations.

The conciseness of expression of the extensions largely depends on the pointcut
language, which determines the possibilities of quantification over joinpoints. The
quantification in AspectJ and CaesarJ is mostly based on the static structure of
programs. Quantification over various dynamic conditions is more powerful, but its
efficient implementation is still a topic of ongoing research. [49]

Since in AspectJ all active aspects must be known at compile time, it is not possible to
bind a variant at runtime. CaesarJ enables runtime binding by supporting dynamic
aspect instantiation and activation. The aspects that can be selected for activation
must still be available at compile time. Runtime availability is possible only in
implementations that support load-time or runtime weaving [50][51].

The main advantages of aspects are support of variation of crosscutting functionality,
possibility of unanticipated variation and small amount of infrastructural code.

The biggest problem of aspects is their impact on modularity. The separation of the
aspects from the modules that they advise is only at the structural level. It is difficult
to understand the dependency between the aspects and the base code and to support
safe evolution of the base code.

Another problem is the interaction between aspects. It can be difficult to predict the
effect of multiple aspects advising the same joinpoint. Especially problematic are
conflicts and implicit dependencies caused by introductions. For this reason,
introductions are not supported in CaesarJ. For extension of classes with new state
CaesarJ provides a mechanism of wrappers, which are defined locally inside aspects
and therefore cannot lead to conflicts and implicit dependencies.

V1.2 7/30/2007 AMPLE WP3 D3.1 27 of 67

© 2007 by the AMPLE consortium Public

Modularity of aspects can be improved using a pattern called Crosscutting Interfaces
[54], which uses a set of static pointcuts to define a boundary between the base
functionality and the aspects. Open Modules [53] propose dedicated language features
to control aspect visibility.

The runtime overhead of aspects without the dynamic features, dynamic activation or
usage of dynamic conditions in pointcuts, is negligible. An efficient implementation
of some of the dynamic features is possible in dedicated virtual machines, such as
Steamloom [50]. Since aspects have global effect, support for incremental weaving is
problematic. Compilation time is also a difficult issue in aspect-oriented languages,
based on static weaving [52].

3.5 Feature-Oriented Programming
A feature can be seen as a logically cohesive piece of functionality, which normally
corresponds to a set of related requirements in a functional specification of a program.
Thus, varying (optional, alternative, etc.) requirements can be represented by varying
(optional, alternative, etc.) features.

The goal of feature-oriented programming (FOP) is to modularize programs into
features. Since features are present in most stages of software development, such
modularization has various advantages, but in this document we will consider only the
advantages related to variability management.

Variability in FOP is achieved by decomposing a program into pieces of code that
implement different features and then by generating different variations of the
program for different selections of features. The reusable assets in this case are the
modules implementing individual features, the variants describe selection of features,
and the binding are compositions of the modules implementing the selected features.

A class can implement multiple requirements that belong to multiple features. On the
other hand, the implementation of a feature can require multiple classes. Thus the
modules in FOP are collections of partial class implementations. In the following, we
will evaluate different approaches that support such modularization.

FOP is implemented in GenVoca [12] and AHEAD [11], which provide tools for
composition of so-called mixin layers consisting of partial definitions of classes. The
transformation type of the mechanism is composition based on merging at the
granularity level of methods. However, slices of the implementation of a method can
also be distributed into multiple layers and combined using the semantics of super
calls. The name clashes that occur during merging are resolved by the order in which
the layers are composed, i.e. the methods of a layer can override the corresponding
methods of the layers that are further according to the order of composition. In this
way more specific features can override the functionality of more general features.

The composition takes place at compile time, and the result of each composition is a
separate program. The approach requires very little infrastructural code and does not
introduce any overhead on runtime performance.

The main problems with AHEAD are related with its weak support for validation and
modularity. The separation of feature modules is at structural level, which means that
the dependencies between feature modules are not declared. This makes it impossible
to validate them in a modular way and to support their incremental compilation.

These problems are alleviated in other approaches that support similar layered
decomposition.

V1.2 7/30/2007 AMPLE WP3 D3.1 28 of 67

© 2007 by the AMPLE consortium Public

Definitions of classes can also be distributed in multiple modules in Open Classes,
implemented in MultiJava [34]. This achieves separation of features at the level of
explicit dependencies, and provides their modular checking and incremental
compilation. However, modular checking in Open Classes is achieved at the cost of
flexibility of separation: an implementation of a method must be located in the
module of its class or in the module where the method was introduced. Besides, Open
Classes do not support the composition and overriding semantics of method
implementations available in mixin layers.

Layered decomposition is also possible in languages supporting virtual classes and
deep mixin composition, e.g. gbeta [30], CaesarJ [29] and J& [55]. The composition
semantics of these approaches also support overriding and composition of method
implementations. The abstract virtual classes of CaesarJ enable definition of
interfaces for feature modules. In this way it is possible to separate the
implementations of different features at the level of segregated interfaces. Besides,
virtual classes support coexistence of multiple different combinations of feature
modules within the same program and their dynamic instantiation.

3.6 Conditional Compilation
Conditional compilation is a simple and widely used variability mechanism in
languages such as Ada, C and C++. Variant, optional, and alternative code segments
are marked using pre-processor directives. In the example shown in Figure 7,
platform specific code is marked using a series of #ifdef statements. Defining a
token WINDOWS, by using #define WINDOWS, will then allow the pre-processor to
include code segments that delineate the windows specific code.

Macintosh specific code…

#endif

#ifdef UNIX

Unix specific code

#endif

//Non platform specific code…

//…

#ifdef WINDOWS

Windows specific code…

#endif

#ifdef MACINTOSH

Figure 7. Conditional compilation

Conditional compilation is an easy way to configure software by allowing fragments
of program code to be included or omitted from the final code, depending on whether
a symbol has been defined or not. In the C and C++ languages, in addition to the
#ifdef command there are also #ifndef (if token not defined) #undef (undefine
the token) and #else (alternative code) directives among others.

V1.2 7/30/2007 AMPLE WP3 D3.1 29 of 67

© 2007 by the AMPLE consortium Public

Pre-processor directives were not seen as important for the Java programming
language, mainly due to its platform independence and ability to do a simple form of
conditional compilation by surrounding variant code segments in a test (Figure 8).
Therefore, if the compiler can prove the code will never get executed it removes it,
although this is rather simplistic and inflexible for anything but small-scale problems.

private static final boolean DEBUG = false;

…code

if(DEBUG){
…debugging code (included if DEBUG set to true)
}

Figure 8. Conditional compilation in Java

Conditional compilation is usually used in combination with build scripts, which
define the process to build various configurations of a program. The variation is
achieved by controlling the set of the files to be compiled and by specifying the
values of the variables used by the pre-processor. There can be multiple build scripts
for building different configurations of a program or a single script parameterized by
corresponding configuration variables.

Conditional compilation implements parametric variation. The reusable assets are the
source files and variants are expressed by values of the configuration variables. These
variables are not typed and can take primitive values, usually Boolean flags and
numbers. The variation is bound at compile time.

The biggest problem with such a variation approach is modularity, because the parts
of code depending on different variants are not separated from each other, which also
often leads to complicated, obfuscated code.

The supported variation is usually described informally in form of comments of
configuration variables. Validation of the variables is usually implemented by explicit
checks in the build scripts. However, the biggest problem is validation of the reusable
assets. Validation takes place only during the build, which means that validation is
performed only for specific variants; therefore, a change for one configuration can
lead to inconsistencies in other configurations.

Incremental compilation is supported in the context of fixed configuration. Changing
a value of a configuration variable usually requires complete rebuilding.

3.7 Code Generation
Code generation [10] is an increasingly popular generative technique that produces
code from a higher abstraction. In the past, the term code generation was used to
describe the process of turning source code into assembly code, although modern
usage typically means the production of the programming code itself. Examples of
code generation in the modern sense include GUI builders, domain-specific
languages, macros, template languages and so forth. Code generators encapsulate the
complexity and finer details of program code, allowing developers and system
configurators to concentrate on domain-specific configuration details.

A prime example of the strength of code generation is in the elimination of the
redundant complexity that pervades the J2EE platform. A large database application
V1.2 7/30/2007 AMPLE WP3 D3.1 30 of 67

© 2007 by the AMPLE consortium Public

that utilizes Enterprise Java Beans (EJB) typically requires two interfaces per table.
Additionally, each table may also require multiple classes to handle the mappings
between the different tables. In a database system that has hundreds of tables this can
result in literally thousands of files, with many of these files sharing a great deal of
‘boilerplate’ code commonality with one another. By using a code generator and
suitable templates, it is possible to automate the creation of these files. Moreover,
changes to a schema are propagated throughout the code, and the templates are
reusable for other database applications. In contrast, if the application were entirely
hand coded from scratch the chances of anything being reused would be opportunistic
at best.

The input for code generation is usually a model that describes some higher-order
abstraction of the system. The models are expressed in domain-specific languages
(DSL) that can have a textual as well as a graphical concrete syntax. This approach of
building software systems is known as model-driven development (MDD) [7]. MDD
technology consists of a variety of tools for different purposes: defining and
implementing DSLs, building model editors, validation of models, defining model to
model transformations, and code generation, which is also known as model to code
transformation. An extensive overview of the MDD techniques is given in our survey
of the state of the art in product line architecture design [1]. In the following we will
only evaluate code generation techniques by the criteria of Section 2.1.

The reusable asset in the code generation is the generator itself, i.e. its implementation
and all artefacts that it uses for generation. The input models are the variants, and
their meta-model describes the variation type.

The expressivity of the transformation depends on the expressivity of the language
used to implement the generator. Using brute force generation, generators are
implemented in a general purpose programming language (GPL). Often the generator
language is the same as the language of the generated code. Another approach is to
use specific DSLs for generation. The advantages of DSLs for code generation are in
fact the same as the advantages of DSLs over GPLs in general:

• By providing specifically designed constructs, DSLs can express generators
more concisely, reduce the implementation complexity and the amount of
infrastructural code

• By constraining expressivity, DSLs protect developers from wrong design
decisions. In GPL developers must work out suitable idioms and rules and
follow them in a disciplined way. Besides, there is a danger that someone who
does not know these rules will break the design assumptions.

Typical DSLs for building generators are various template languages, such as XSLT
[58], XPand of openArchitectureWare [26], XVCL [56] and ANGIE [57]. The
generators are implemented by a set of templates. Templates mix pieces of code to be
generated with template instructions that control generation. The languages provide
constructs for parameterization of the source code, conditional generation, code
repetitions, navigation over the input model, and search in the model.

V1.2 7/30/2007 AMPLE WP3 D3.1 31 of 67

Generator code is modularized by decomposing it into multiple templates. The
templates can have parameters and use other templates in their implementation.
XPand provides a dispatch of templates on their model parameter. In this way it is
possible to separate code depending on different variations in the model. XPand also
has aspect-oriented constructs that enable modularization of crosscutting concerns at
the level of templates.

© 2007 by the AMPLE consortium Public

An advantage of template-based generation is that it minimizes the optical difference
between the generator and the generated code, and thus it makes it easier to
understand the output of generation. The distance between the generator and its output
is especially big in API-based generation, which makes such generators very difficult
to understand.

Template languages, like brute force generation, are not bound to a specific target
language. An obvious advantage is that they can be used for generation of code in
different languages and even for non-code artefacts. The disadvantage is that such
generalization makes it impossible to provide any validation of the pieces of target
code contained by the templates. Therefore, only the instructions of the template can
be validated, which, of course, is not sufficient to guarantee any properties concerning
consistency of the generated code. Lack of modular validation is not so critical in
template-based generation, because generation takes place at compile time, thus, the
generated code can be validated at compile time by some compiler of the target
language.

A better support for validation is available in language-specific template-based
generation approaches, such as template meta-programming in C++ [5][59] or in
Haskell [60]. These approaches check the syntactic correctness of the templates. They
are however not specifically designed for code generation from models and, thus have
similar problems as brute force generation with GPLs.

Syntactic checking is also an advantage of API-based generation, because the
generators work at the level of the abstract syntax trees. They are suitable for
complicated transformations, especially when no larger solid pieces of generated code
can be identified. In other cases the generators implemented in this way are much
larger and complicated than their template-based counterparts.

Complete type checking of code generators is difficult and possible only by
constraining their expressivity. Type-safe solutions are proposed for conditional
variation of method declarations in a class [61] and iteration over methods of a class
to generate methods of another class [62]. These solutions are very new and cover
only very special cases of code generation.

3.8 Interpreters
In a previous chapter, we mentioned that variation can be expressed by models of
various DSLs, which are then transformed to code of a conventional programming
language using code generation. Another approach to implement a DSL is to write an
interpreter for it in some programming language. In such a scenario, the interpreter is
the reusable asset and variation is bound at runtime by calling the interpreter with
some program.

The advantages and disadvantages of using interpreters instead of code generation are
discussed in [7]. It is argued that it is common to use code generation to express static
aspects of a system, while interpreters are suited when the DSL expresses behaviour.
In fact, if there no dynamic behaviour related with a DSL, there is nothing to interpret.
Thus, it makes sense only to compare interpreters or code generation with respect to
implementation of DSLs with dynamic behaviour.

The major advantage of interpreters is that they provide variation at runtime.
However, in the languages supporting dynamic loading, such as Java, it is possible to
use code generated at runtime. Explicit execution of DSLs in interpreters can be

V1.2 7/30/2007 AMPLE WP3 D3.1 32 of 67

© 2007 by the AMPLE consortium Public

advantageous for traceability, because there is a direct link between the execution
state and the executed program.

The major argument against using interpreters is loss of performance. The generated
code can be compiled, optimized, and executed directly by the processor, while an
interpreter executes the program as a virtual machine, which itself is executed by the
physical machine. This additional level of indirection usually causes significant drop
of performance.

The static nature of code generation can also be an advantage, because the generated
code can be statically checked by its compiler. The interpreter can only perform static
checking of DSL code before executing it, but this kind of validation is also possible
in case of code generation.

3.9 Configuration Management
Configuration management (CM) is the process of identifying, defining and recording
changes to configuration items in a system. CM also reports on the status,
completeness and correctness of the configuration items and is used for storing
different versions of a component or software artefact for use in different products.
Pressman defined CM in [24] as a set of activities designed to control change by
identifying the work products that are likely to change, establishing relationships
among them, defining mechanisms for managing different versions of these work
products, controlling the changes imposed, and auditing and reporting on the changes
made. It is used in conjunction with a wide variety of the following approaches such
as object-oriented frameworks and component-based models for example. However,
while the usage of this approach to variability management is widespread in industry,
it does not represent the state of art for software product line development. Krueger in
[6] discusses the problem that traditional configuration management tools have in
managing “variations in space” (the differences between individual products in the
domain space at any fixed point in time) as opposed to “variations in time” (tracking
changes and evolution). That being said, CM should still be used in software product
line development for versioning of the product line architecture.

Although configuration management consists of a wide range of activities concerning
variation, it is often considered to be equal to revision/version control. Instead the
latter one is a part of CM. There are plenty of tools supporting the management of
different revisions of source files. Systems like CVS or Subversion are mostly used in
the open source community; examples for commercial tools are IBM Rational
ClearCase, Perforce, PVCS or Microsoft SourceSafe. These tools are much more
focused on management of files than of more abstract concepts like features. These
tools could be used for feature and variation handling, but such an approach would be
far away from being efficient. Revision control systems offer the ability of managing
different versions of a software product on different development streams. These
streams are called branches. Changes on one branch may be propagated to other
branches. While there is tool support for merging functionality from one branch into
another and for dealing with conflicts that may arise, using this functionality for
product line management may be at hand. But the management of products of a
product line put on different branches becomes tedious with an increasing number of
products. While such tools may be used to develop three or four products in parallel,
the management of a product line consisting of more than 15 or 20 products is almost
impossible. For being able to handle concepts like features and their relationships
more tailored tools are necessary. Some are discussed in chapter 4 of this document.

V1.2 7/30/2007 AMPLE WP3 D3.1 33 of 67

© 2007 by the AMPLE consortium Public

As already indicated configuration management does not only contain activities
regarding the management of changes to source code, it is also related to activities
like actually building a product. This includes the creation of components, handling
conflicts and assembling a product out of these components. It is easy to draw a
connecting line to feature modelling in SPLs, which may be used as a fundament,
when applying configuration management systems in SPL engineering.

3.10 Conclusion: Elements of Variation Mechanisms
In spite of the diversity of variation mechanisms that were evaluated in this chapter
we can identify several reoccurring techniques that form the basis of these
mechanisms:

• Parameterization. A large part of variation mechanisms implement some
form of parameterization. In parametric variation reusable assets expose a set
of explicit parameters that can be bound to different values. Parametric
mechanisms differ by the object of parameterization, the type of parameters,
the way the parameters can be used and the binding time. Conventional object-
oriented languages provide parameterization by objects at runtime at the scope
of methods, objects and programs. Frameworks and various design patterns,
e.g. Strategy, State, Decorator, specialize primitive parametric mechanisms of
object-oriented languages for specific problems and scenarios. The
conventional mechanisms of programming languages do not support static
parameterization. This hole is filled by more specific language features, such
as generics or C++ templates that enable static parameterization of classes,
and pre-compilation techniques, such as conditional compilation and template-
based generation, that enable static parameterization at the scope of modules
and other artefacts.

The general characteristic of parametric variation is its high expressive power,
because variation is expressed as computation with the variant as input.
Another advantage of parametric variation is that variants are independent
from reusable assets. However, the cost for this is usually a strong dependency
of reusable assets on variants, which makes it difficult to extend the system
with new variants. Because of weak support for extensibility, the reusable
assets must be specially prepared to support required variations, which means
that parametric variations are best suited for anticipated variation. Another
observation is that there is a trade-off between the high expressivity of a
parametric mechanism and the static validation of its possible results. For
example, in the template-based generation it is even not possible to determine
if a template will always produce syntactically correct code. An opposite
example is generics, which supports complete type checking of parameterized
classes, but the generic parameters can be used only in very strict way.

• Dispatch. Parametric mechanisms are often supplied with some form of
dispatch on the parameter values. The most well known example is dispatch of
method implementation by the type of receiver in object-oriented languages,
also known as late binding. Other interesting examples of dispatch are partial
template instantiation in C++ and dispatch of templates in XPand.

Dispatch improves modularity of parametric mechanisms, because it reduces
dependency of reusable assets on specific variants. The pieces of code that
depend on different variants can be isolated from each other. In this way

V1.2 7/30/2007 AMPLE WP3 D3.1 34 of 67

© 2007 by the AMPLE consortium Public

stability and extensibility of the system is increased, because new variants can
be introduced without changing existing code.

• Refinement. Refinement is an alternative to parameterization: instead of
specifying variation by explicit parameters, we open the structure of reusable
assets for extension and overriding. The refinement mechanisms that were
discussed in this chapter differ by their scope: class inheritance enables
refinement with class scope, while AOP and FOP define refinements with
program scope. Refinement with collaboration scope is possible with virtual
classes.

The major advantage of refinement lies in its support for unanticipated
variation, because variation is enabled implicitly by leaving the structure of
reusable assets open for extension. Another advantage is that a reusable asset
is completely independent from its variations. However, this independency is
usually achieved at the cost of a strong dependency in the opposite direction.
The strong dependency of extensions on the code they extend is the major
problem of refinement mechanisms. Support for independent extensions is
also problematic, because the extensions are not aware of each other and can
interact in unpredictable ways. Examples of this problem are: the aspect
interaction problem and the problem with name clashes in multiple
inheritance.

• Quantification. The major innovation of aspect-oriented languages is
possibility of quantification over the points of extension. Quantification
improves expressivity of refinement mechanisms, because crosscutting
extensions can be expressed in a concise way. Quantification can also improve
stability of extensions, because instead of explicitly enumerating extension
points we refer to them by their properties.

• Composition. Variations are often expressed as different combinations of a
predefined set of reusable assets. Technically, compositional variability can be
achieved using the same parameterization and refinement mechanisms: in the
first case we compose a reusable asset with a parameter value, while in the
second case we compose a reusable asset with its extension. The main
difference is that in case of compositional variability we treat the parameter
values and extensions as reusable assets.

Compositional variation is often an alternative to implementation of
configuration using simple parametric variation, e.g. conditional compilation
or conditions on global variables. The advantage of compositional variation is
better modularization of variant dependent code: each component contains the
code that depends on the selection of that component in the variant. Besides,
we can extend the system with new components. Other properties of
compositional mechanisms are very different and rely on the properties of
underlying parametric and refinement mechanisms.

We can see that different variation techniques have different advantages and
disadvantages, and what variation mechanism we choose depends on our
requirements to variability support. In order to cover a broader spectrum of variability
requirements, we must either alleviate the disadvantages of individual variation
mechanisms or to develop a coherent implementation technology that integrates
multiple variation mechanisms.

V1.2 7/30/2007 AMPLE WP3 D3.1 35 of 67

© 2007 by the AMPLE consortium Public

Programming languages are such coherent technologies that integrate multiple
variation mechanisms, but they are still far from covering the complete spectrum of
variability requirements. Mainstream programming languages such as C++ and Java
lack variation mechanisms with a scope larger than classes. With the exception of
C++ templates there is almost no dedicated support for static variation.

The need for large-scale refinement mechanisms is addressed by feature-oriented and
aspect-oriented programming. Large-scale parametric mechanisms are provided by
template-based languages, but differently from aspect-oriented mechanisms,
templates are not integrated in the programming languages: what makes it impossible
to validate them in a modular way.

A lot of variation mechanisms are available only at compile time or only at runtime.
This means that if we decided to switch to change binding time, we have to
reimplement our assets with different mechanisms. An interesting research direction
would be to make certain static variation mechanisms available at runtime, or the
other way around.

It was mentioned that dispatch improves modularity and extensibility of parametric
variation mechanisms. We can observe, however, that the mainstream parametric
mechanisms have weak or no support for dispatch. More sophisticated forms of
dispatch such as multi-dispatch or predicate dispatch [63] are available only in
research languages and are not used in practice.

4. Evaluation of Existing Tools
In this chapter we evaluate four different tools with respect to the criteria introduced
in Section 2.2. We consider here only the tools that cover a range of activities of the
development of SPLs. The following three tools fit this requirement, provide typical
development environments for SPLs, and are among the most feature-rich tools:

1. pure::variants from pure-systems™, a German software development company;

2. Gears from BigLever Software, Inc.™, a US software provider;

3. fmp2rsm, a SPL tool developed by Prof. Czarnecki and his group.

Furthermore, we evaluate a representative tool suite for general-purpose modelling
and DSL engineering:

4. openArchitectureWare, an OSS effort.

This set of tools seems particularly useful for evaluation in the context of the AMPLE
project, in which new approaches to tooling for SPLs are to be developed but for
which integration with mainstream approaches is also of importance.

In the section, the main characteristics of the three tools listed above are presented.
The tool evaluations are structured according to the top-level categorization of the set
of criteria defined in section 2.2.

4.1 pure::variants
Pure::variants [3] is a commercial tool with a free entry-level edition that provides the
currently most complete support for SPL development over the software lifecycle.

Concepts. pure::variants provides explicit representations for sets of variants of
components (as part of its “family models”) and features. Family models are built

V1.2 7/30/2007 AMPLE WP3 D3.1 36 of 67

© 2007 by the AMPLE consortium Public

from concrete assets (typically files), declare relationships between them (e.g. arity
relationships), and make it possible to associate existing implementations to
components. Feature models may be hierarchical. Relationships between components
and features can be defined using logic-based constraints or in terms of a table-based
representation. Variant description models are defined to represent a set of models for
configuration and transformation. Each different variant product has an associated
variation description model. Transformations occur by replacing fragments of file that
represent assets. A validation is done by automatically checking the selection of
desired features for the variant product.

pure::variants is agnostic to the concrete implementation technology used for assets (a
property that is shared by, e.g., the Gears tool that is described below). Nevertheless,
it comes equipped with several extensions that integrate with different industrially
relevant implementation frameworks, e.g., SAP's ERP systems as well as the DOORS
requirement support system.

Functionality. pure::variants directly supports three different phases of the software
lifecycle: (i) feature definition and asset-feature mapping, (ii) configuration of an SPL
and (iii) assembly of a product by selecting features and corresponding components
from an SPL. It provides limited support for requirement and configuration
management. However, pure::variants does not provide direct support for other tasks,
such as requirements and architecture analysis, asset development and the execution
of products. Some of these tasks are supported by interfaces to third-party tools (e.g.,
requirements analysis with DOORS, simulation with Simulink). SPL models based on
other information (e.g., stemming from an architecture analysis), variant models as
well as feature models may be transformed using a specially-tailored XLST
framework.

pure::variants is agnostic to concrete implementation languages and underlying
implementation technologies in the sense that these are either provided through
suitable import and export plugins or can be supported by specially-tailored plugins.

pure::variants in itself is not specialized to any application domain. However, specific
integration modules exist for some industrially relevant domains, such as SAP's ERP
software.

The tool provides user interfaces with graphical representation of the models and
ways to define and modify these models. Specific interfaces are also used for the
definition of all provided models, definition of features characteristics, model
dependencies, and transformation management.

Usage. pure::variants is available in different commercial versions and a free
community edition, the latter lacking some extensibility features and being restricted
to small feature models.

Extension of this tool is explicitly supported through the Eclipse [8] extension
framework. Furthermore, XSLT transformations can be used to extend the provided
family and feature models and new features can also be implemented through SOAP
and COM/OLE interfaces.

Pure::variants supports interoperability with other tools by several predefined or user-
defined export mechanisms for feature and family models. Source code of assets can
be used to import code artefacts natively for a small set of languages and can be
handled using plugins otherwise.

V1.2 7/30/2007 AMPLE WP3 D3.1 37 of 67

© 2007 by the AMPLE consortium Public

Usability of the development environment is enhanced by supporting (the
manipulation of) textual as well as graphical representations of key abstractions.

4.2 Gears
Gears [2] is a commercial tool based on a graphical user interface or command-line
user interface. It allows the definition of variation points and features, and the
definition of concrete products through selection of variants and assembly of the
corresponding products.

Concepts. An asset in Gears is a group of various forms of files related to source
code, test- and maintenance-related data. Gears provides a notion of variation points
that represent parts of software assets that can be configured according to features.

Gears also provides a special purpose language for defining how different features
may modify an asset: this language basically makes it possible to test for feature
values and select concrete assets accordingly. First, an abstract file of an asset can be
created by selecting a concrete file. Second, the text of the concrete file can be
customized by text substitution using text patterns defined in a pattern file. Features
are defined using a textual special purpose language that makes it possible to
hierarchically define sets of simultaneously applicable or mutually exclusive options.

Composition within products is supported by three different mechanisms: a module
abstraction for grouping software assets, a mixin-like abstraction to support
crosscutting definitions over modules and a composition matrix. Nesting of product
lines is also supported.

Functionality. Like pure::variants, Gears supports three different phases of the
software lifecycle: (i) feature definition and asset-feature mapping, (ii) configuration
of an SPL and (iii) assembly of a SPL. However, it does not provide direct support for
other tasks, such as requirement and architecture analysis, asset development and the
execution of SPLs.

Gears is agnostic to other methodologies and technologies used to support SPL that
are not directly related to feature management. Software artefacts generated by, e.g.,
tools for software design, can be used as assets within Gears and assets may be
implemented according to different, e.g., industrial, component standards. In contrast
to pure::variants, Gears does not provide specific interfaces for existing
infrastructures but relies on direct manipulation of compatible software assets.

Finally, Gears is not targeted at particular application domains.

Usage. Gears is licensed on a per-user basis and only different evaluation versions
are freely available on request. The underlying development environment does not
provide an explicit support for extension or configuration. All main concepts of the
tool - such as variation points, features and composition abstractions – are easily
manipulable in a textual and graphical way.

4.3 fmp2rsm
fmp2rsm is an implementation of Feature-Based Model Templates for IBM Rational
Software Modeler (RSM) [67] and IBM Rational Software Architect (RSA) [68],
which are UML modelling tools. fmp2rsm integrates the Feature Modeling Plug-in
(fmp) [69][70] with RSM and enables product line modelling in UML and automatic
product derivation. The fmp is an Eclipse plug-in for editing and configuring feature
models.

V1.2 7/30/2007 AMPLE WP3 D3.1 38 of 67

© 2007 by the AMPLE consortium Public

Concepts. As presented in [71], fmp2rsm provides explicit representations for sets of
family models. A family model is represented by a feature model and a model
template. The feature model defines features with constraints on the possible
configurations. The model template contains the union of the elements in all valid
template instances. The set of the template instances corresponds to the scope of the
model family. The elements of a model template may be annotated using presence
conditions (PCs) and meta-expressions (MEs). These annotations are defined in terms
of features and feature attributes from the feature model, and can be evaluated with
respect to a feature configuration. A PC attached to a model element indicates
whether the element should be included in or removed from a template instance. MEs
are used to compute attributes of model elements, such as the name of an element or
the return type of an operation. An instance of a model family can be specified by
creating a feature configuration based on the feature model. Based on the feature
configuration, the model template is instantiated automatically. The instantiation
process is a model-to-model transformation with both the input and output expressed
in the target notation. It involves evaluating the PCs and MEs with respect to the
feature configuration, removing model elements whose PCs evaluate to false and,
possibly, additional processing such as simplification.

Functionality. fmp2rsm supports three different phases of the software lifecycle: (i)
feature definition and RSM/RSA-feature mapping, (ii) configuration of an SPL and
(iii) generation of template-instance (models) of a product line member by selecting
features. fmp2rsm follows a model driven development (MDD) strategy relying on
model-to-model transformations and does not provide model-to-text facilities. For
this, the use of specialized tools such as MofScript [72] or Acceleo [73] is suggested.
fmp2rsm provides limited support for requirement and configuration management.
Based on fmp, fmp2rsm provides an automated verification procedure for ensuring
that no ill-structured template instances are generated from a correct configuration. It
also provides functionality for creating staged configuration of product line members,
useful, for example, for sharing the responsibility of configuring products between
different users/roles, and extends the traditional semantics of feature models allowing
the creation of clonable features, or feature nodes with typed attributes. As
pure::variants, fmp2rsm does not provide direct support for other tasks, such as
requirements and architecture analysis, asset development and the execution of
products. Some of these tasks are supported by RSM/RSA. fmp2rsm is not
specialized to any application domain.

Usage. fmp2rsm is freely available through its homepage (see [74]). However, it
works on the platform of IBM Rational Software Modeler or IBM Rational Software
Architect, which are commercial tools. RSM/RSA 30-day trial versions can be
accessed from [75]. Extension of fmp2rsm is supported through the Eclipse-plugin
mechanism.

4.4 Modelling tools for SPL: the example openArchitectureWare
openArchitectureWare (oAW) is a free tool for model-driven development, that
provides complete support for the design of Domain Specific Languages (DSLs) [26].
It does not explicitly support the design and implementation of SPLs by means of
dedicated representations.

Concepts. oAW supports the implicit management of variability using model
transformation techniques. Domain meta-models define domain concepts and possible
variations are represented using a tool for defining DSLs (using a formalism based on

V1.2 7/30/2007 AMPLE WP3 D3.1 39 of 67

© 2007 by the AMPLE consortium Public

BNF-style grammars) together with additional semantic constraints. The description
of a variant product is made by writing DSL code. The validity of variant products
can be checked using language parsing and model validation techniques. A model
transformation chain is used for the generation of source code for products; assets are
also defined and manipulated using meta-models, transformation rules, and generation
templates. Model transformation supports the use of Aspect-Oriented Software
Development techniques. Transformations can take as input many models (instances
of one or more meta-models that themselves can be instances of different meta-meta-
models) and can define the way models are woven in order to produce one or more
models. From a code generation perspective, some templates can be used to customize
other existing templates without having to modify them, thus making it possible to
manage separation of concerns and unanticipated variants. These facilities can be
harnessed as part of a configurable workflow: the workflow itself can be split into
parameterized components, enabling variability of the product design and generation
process itself.

Functionality. oAW provides a set of specific languages to support the entire design
process of a DSL [26]: a first phase consists in domain meta-modelling, a second
phase consists in defining the grammar of the DSL language. To this end, a dedicated
language with a simple BNF-like syntax named Xtext, is provided. Xtext descriptions
are used by oAW to produce syntactic analysers and a corresponding meta-model. A
third step consists in the definition of transformation rules between meta-models (and
particularly between the domain and the syntax meta-model). The Xtend language is
provided to define transformation rules: it allows weaving different models, instances
of different meta-models, and supports aspect oriented model transformations. As part
of a fourth step, constraints can be defined to validate models. A language, named
Check is used to describe model validation rules and error messages. Finally, the fifth
and last phase consists in defining templates for source code generation. A template
language named Xpand, is provided to this end (cf. Section 3.8). All of this process
(parsing, checking, transforming and code generating) is supported by the oAW
workflow engine and configured with specific workflow configuration files, thus
providing large flexibility.

This process does not necessary include the use of all languages and other tools.
Complementary facilities of the ECLIPSE modelling world can be used instead or in
addition. oAW is agnostic to concrete implementation languages and underlying
implementation technologies in the sense that any type of source code can be
generated by the transformation chain. It is also not specialized to any application
domain.

Usage. oAW is a freely available ECLIPSE plug-in [26], deeply integrated with the
well known plug-in EMF [9]. oAW supports, with import and exports facilities, the
use of many ECLIPSE standard formats (and particularly ECore) during the DSL
design process, making its usage rather well interoperable with the rest of the Eclipse
modelling world (GMF, UML2, OCL, etc.).

Furthermore, the oAW workflow is highly configurable: many kinds of existing
technologies can be used instead of oAW languages for defining meta-models (even
some non-Eclipse ones), transformations rules (e.g. ATL), constraints (e.g. OCL) and
templates (e.g. JET). Extension of this tool is explicitly supported through the Eclipse
extension framework.

V1.2 7/30/2007 AMPLE WP3 D3.1 40 of 67

© 2007 by the AMPLE consortium Public

V1.2 7/30/2007 AMPLE WP3 D3.1 41 of 67

4.5 Evaluation
The evaluation of the four tools given in the previous section gives rise to different
major issues that are relevant for the endeavour of integrating new support for SPL
with existing tooling as well as underlying software development methodologies and
implementation technologies:

• All evaluated tools only cover directly the phases of variant and feature
definition as well as product composition by feature selection. There is,
however, almost no explicit support for the testing, execution and maintenance
of SPLs.

• Existing tools offer almost no means for some key features relevant to SPL
development. Traceability over the software lifecycle, for instance, is covered
only rudimentarily by the existing tools. The tools do not allow, for instance,
tracing information during execution within parts of a module that constitutes
one asset on the level of the variant and feature models. However, this
information can very well be relevant to improve the feature model of the
underlying product, especially during evolution of the product. In addition, the
evaluated tools lack of orthogonal mechanisms for managing the whole SPL
development activities such as requirements management or configuration
management and the respective versions control.

• Even when some tools use different kinds of models as core assets for
composing entire SPL members, there is limited integration of the model
driven development principles, related with the development of domain-
specific model languages or the definition of reusable model transformation
rules, that would allow composing or refining models until the final SPL
members are obtained.

• Integration with existing tool development environments, such as Eclipse, is
advantageous compared to a standalone tool, in particular, for achieving
extensible and interoperable tool support for SPLs. Tool development
environments support these criteria in two ways; first, directly through
extension mechanisms (such as the Eclipse extension mechanism or plugin
mechanisms) that can be leveraged for SPL development; second, indirectly
through better interoperability with already existing tools that are relevant to
SPL development.

• DSLs and feature models are complementary approaches for the engineering
of large scale SPLs. Feature modelling is well suited for configuring the main
features of a line of products. When considering in detail some complex
and/or highly configurable parts of a product, the use of a DSL can be very
useful. For example, if some parts of a product require specific behaviour it is
generally more intuitive, easy and powerful to express this behaviour with a
DSL. The DSL approach is generally well-suited for engineering SPLs "in the
small". No tool currently exploits the respective qualities of both approaches.

© 2007 by the AMPLE consortium Public

Tabular comparison

Table 1. Tabular comparison of the tools at the conceptual level

 pure::variants Gears fmp2rsm oAW

Variation
mechanism

 File realization Text Substitution

Variation
management
principle

a piece of text is
replaced by
a substitution text

an abstract file
(directory)
is realized by a
concrete file
(directory)

a piece of text is
replaced by
a substitution text

A model-template
instance is created
from a model-template
and a feature
configuration

source code is
generated from DSL
code via a model
transformation chain

Reusable Assets files (code,
documentation)

 any kind of asset
implemented
using files (directories)

any kind of asset
implemented
using text files

models meta-models,
transformations rules,
generation templates

Variation Type parts of files an abstract file
(directory)

piece of text in an asset
that
matches one of the
patterns
defined in a pattern file

Multiple stereotypes in
models, cardinality,
and model elements

defined by DSL
syntactic and semantic
rules, instantiation of
meta-models and
templates parameters

Variants fragment of text (code,
documentation)

concrete files
(directory)

the different
substitution
texts defined for the
matched text in a
pattern file

Concrete stereotypes
and cardinality, and
concrete model
elements

DSL code, models,
source code

Expressive Power
Transformation
Type

replacement file (directory)
realization

text substitution using
pattern
matching

Composition/ Merging model transformation,
(AO) code generation

Granularity fragment of files files characters Fragments of models fragment of meta-
models, fragment of

V1.2 7/30/2007 AMPLE WP3 D3.1 42 of 67

© 2007 by the AMPLE consortium Public

templates
Binding Model
Binding Time assembly assembly assembly assembly
Availability Time before binding before binding before binding before binding
Scope of Binding file file models Meta-model,

transformation rules,
templates

Validation
Availability of
variation type

explicitly specified explicitly defined as a
file
(directory)

explicitly defined as
files

explicitly specified explicitly specified as a
DSL BNF and meta-
models

Validation of
binding

possible possible, there are
constraints
in the feature selection
that assure that a
selection
can result in a valid
product

possible, there are
constraints
in the feature selection
that assure that a
selection
can result in a valid
product

possible Possible via DSL
syntactic analyzers and
model constraints
checking

Modularity
Structural
Separation

not clear There is the notion of module, which define the
scope of feature declarations

not clear. Features can
be grouped and after
referred by other
features. Model
templates are managed
separately.

No explicit description
of features. Meta-
models and templates
can express different
concerns

Explicit
dependencies

it is possible to declare
restrictions and
constraints that refer to
features

modules can depend on mixin modules. The
dependencies are implicit in the context of a
module, but they become explicit in the
definition of a concrete product

It is possible to define
dependencies between
features, between
model templates, and
between feature and
models templates

dependencies between
meta-models are
explicit in
transformation rules.
Explicit dependencies
between templates and
meta-models.

Segregated variation description using the concept of a matrix, different products It is possible using the not relevant

V1.2 7/30/2007 AMPLE WP3 D3.1 43 of 67

© 2007 by the AMPLE consortium Public

interfaces models can be instantiated for different clients concept of staged
feature configurations
and specializations

Asset/Variation
Dependency

unaware unaware unaware unaware

Decomposition of
Assets

assets in different files assets in different files Assets in different files
that represent different
models

no

Decomposition of
Variations

features model
hierarchy

features model hierarchy features and model-
templates hierarchy

not explicit

Table 2. Tabular comparison of the tools at the functional level

Process coverage

definition of SPL feature model feature model feature model DSL

analysis/validation
of SPL (domain

space)

yes, checks
compatibility between

feature model and
family model

yes, the tool includes a statistics report, which,
for instance, computes the number of potential

products based on the number of feature
declarations and definitions

yes(computing
number of

configurations
represented by a
feature model,
propagating

configuration choices,
and so on [65])

no

analysis/validation
of products

(application space)

yes, check
compatibility between

feature model and
variation description

model

yes, checks that the feature selections of a
product instance are correct with regard to the

corresponding feature model and check the
correct selection of product instances for each

module and mixin module

yes (verifying feature-
based model templates

against well-
formedness OCL
constraints [66])

yes (checking model
validity against OCL

constraints)

product assembly yes yes no yes

product testing no no no no

product execution no no

V1.2 7/30/2007 AMPLE WP3 D3.1 44 of 67

no no

© 2007 by the AMPLE consortium Public

product
maintenance

no no no no

Support for specific
application domains

no no no no

Expressiveness of
feature model

editors

Hierarchy of
features

yes yes yes, including the
possibility of creating

cloned features

not relevant

Feature selection one-of, more-of,
optional, mandatory

one-of, more-of, optional, mandatory one-of, more-of,
optional, mandatory

not relevant (not
explicit in DSL code)

Feature with values yes yes yes, including typed
attributes.

not relevant

Assertions on
feature values

yes yes yes not relevant

Feature
Representation

graphical textual graphical and textual. not relevant

Multiple feature
models

yes yes yes. Including
constraints between

them that allow staged
specialization.

not relevant (but
multiple DSL can be

used)

Feature-model
dependencies

yes yes yes. Including OCL
constraints.

not relevant

Product creation

Support for
managing feature-

model instances

yes yes yes no

V1.2 7/30/2007 AMPLE WP3 D3.1 45 of 67

© 2007 by the AMPLE consortium Public

V1.2 7/30/2007 AMPLE WP3 D3.1 46 of 67

Support for product
instantiation

yes yes no, just model
instantiation

yes (generation of
source code from DSL

code)

Execution
environment

no no no no

Editors to manage
dependencies

between feature
models

yes yes, it is textually possible to manage the
dependencies on the feature models of mixin

modules

yes no

Code generator yes no no yes

Implementation
targets

technology agnostic,
specific support for

C/C++ and Java

technology agnostic

no technology agnostic

© 2007 by the AMPLE consortium Public

5. Existing Implementation Practices Applied at
Industrial Partners

This chapter gives an overview about the various implementation techniques used at
industrial partner sites.

5.1 SAP
At SAP various techniques are already applied to implement variability in software
products. This section gives an overview of technologies currently used in SAP.

5.1.1 SAP NetWeaver Platform
SAP NetWeaver is the underlying technology platform of all SAP applications. The
following figure gives an overview of the SAP NetWeaver solution map:
User Productivity
Enablement

Running an
Enterprise Portal

Enabling User
Collaboration

Business Task
Management

Mobilizing
Business
Processes

Enterprise
Knowledge
Management

Enterprise Search

Data Unification Master-Data Harmonization Master-Data Consolidation Central Master-Data
Management Enterprise Data Warehousing

Business Information
Management

Enterprise Reporting,
Query, and Analysis

Business Planning and
Analytical Services

Enterprise Data
Warehousing

Enterprise Knowledge
Management Enterprise Search

Business Event
Management Business Activity Monitoring Business Task Management

End-to-End Process
Integration

Enabling Application-
to-Application
Processes

Enabling Business-to-
Business Processes

Business Process
Management

Enabling Platform
Interoperability

Business Task
Management

Custom Development Developing, Configuring, and Adapting Applications Enabling Platform Interoperability

Unified Life-Cycle
Management Software Life-Cycle Management SAP NetWeaver Operations

Application
Governance and
Security Management

Authentication and Single Sign-On Integrated User and Access Management

Consolidation Enabling Platform
Interoperability

SAP NetWeaver
Operations

Master-Data
Consolidation

Enterprise Knowledge
Management

Enterprise Data
Warehousing

ESA Design and
Deployment Enabling Enterprise Services

Figure 9. SAP NetWeaver Solution Map

Obviously, a whole range of different technologies, frameworks and libraries are
integrated in this platform. At the bottom there are two different language stacks

At the bottom there are two different language stacks that are coexisting. SAP
software may be implemented on top of both of these stacks:

1. ABAP (Advanced Business Application Programming) [22] was developed
and extended by SAP as the primary language for writing business
applications. The ABAP stack will remain the strategic platform for business
logic running on backend servers, also in the advent of the upcoming
Enterprise SOA based, component-oriented Business Process Platform.
Although legacy plain ABAP programs are still supported, new applications
are almost exclusively written in ABAP Objects, the downward compatible
Object-Oriented extension of ABAP. ABAP Objects has all major features of
modern OO languages, except for method overloading. However, the lack of
this feature can be circumvented by a number of alternative best practices.
ABAP furthermore has a number of built-in language features like direct

V1.2 7/30/2007 AMPLE WP3 D3.1 47 of 67

© 2007 by the AMPLE consortium Public

access to database tables, which predestine it for implementing data-intensive
business software.
In addition ABAP features aspect-oriented characteristics, which are explained
in section 0 in greater detail.

2. Java on the other hand is primarily used for most web-based UI/portal
technologies (on a JEE basis). Java also plays an increasing role for
implementing service consumption and service composition on top of the
Business Process Platform. This strategic decision for a wide-spread industry
standard language enables SAP partners and ISVs to recruit developers from a
far larger community than in a pure ABAP-based environment.

While ABAP development (programming, debugging, deployment etc.) is supported
by a set of dedicated development transactions, which are executed on the host server,
all Java development at SAP is performed using the client-side IDE of NetWeaver
Developer Studio (NWDS). NWDS is an extension of the popular Eclipse tool
platform [20], [21], which consists of a large number of SAP-specific plug-ins. Plug-
ins are the primary extension mechanism for addition new features to the Eclipse
platform.

Connectivity between distributed components is established via three technologies:
Remote Function Calls (RFC), the J2EE Connector Architecture (JCA) and the Java
Message Service (JMS).

RFC is the standard SAP interface to communicate with SAP backend systems and
non-SAP systems, where functions can called to the executed on remote systems.

The JCA is a specification that defines the standard architecture for connecting the
Enterprise Edition of the Java Platform (J2EE) to heterogeneous Enterprise
Information Systems (EIS), which may include ERP and database systems. The
mechanisms that the connector architecture defines are scalable and secure and enable
integration of the EIS with application servers and enterprise applications. An EIS
may supply so-called resource adapters, which are used to connect to the EIS. The
connectors can be plugged into an application server and provide connectivity
between the EIS, the application server and the enterprise application. When an
application server supports this connector architecture, it provides seamless
connectivity to multiple EISs.

JMS is a set of interfaces and associated semantics that define how a JMS client
accesses the facilities of an enterprise messaging product. A JMS application is made
up of a set of application defined messages and a set of clients that exchange them.
Products that implement JMS do this by supplying a provider that implements the
JMS interfaces. Messages are asynchronous requests, reports or events that are
consumed by enterprise applications.

Enterprise systems need to persist large amounts of data. To achieve this task the
NetWeaver Platform enables the use of several technologies for establishing
persistence.

OpenSQL is the SAP database abstraction layer implemented in ABAP that translates
abstract SQL statements to native database SQL statements. OpenSQL covers the
Data Manipulation Language (DML) part of the SQL standard and extends the SQL
standard by offering options to simplify and accelerate database access.

V1.2 7/30/2007 AMPLE WP3 D3.1 48 of 67

© 2007 by the AMPLE consortium Public

Java Database Connectivity (JDBC) technology provides cross-DBMS connectivity to
a wide range of SQL databases and access to other tabular data sources, such as
spreadsheets or flat files. It is supported by the NetWeaver Platform for J2EE
development. With a JDBC technology-enabled driver it is possible to connect all
corporate data independent from homogeneous or heterogeneous environments.

The Java Data Objects (JDO) API is a standard interface-based Java model
abstraction of persistence. It is supported by the NetWeaver Platform as an alternative
to JDBC. JDO technology has the advantage to be able to store Java domain model
instances directly in a database. The process of mapping data to relational databases is
transparent for a developer.

For implementing business logic both of the language stacks mentioned above can be
used. ABAP is tailored to implementing business applications. It allows quick
development of business applications providing powerful macros to create the actual
business logic based on SAP backend systems. There is a huge amount of existing
business objects on which a developer may rely on.

The Composite Application Framework (CAF) offers a methodology and toolset to
create and manage composite applications. It leverages information and data from
existing applications to solutions by composing existing or new services, user
interface components, and business processes. CAF is based on the Enterprise
Services Architecture (ESA) and comprises an abstraction layer for services and
processes as well as design tools and integrates many key capabilities of the
NetWeaver Platform.

In the area of user interaction Web Dynpro is the recommended NetWeaver
programming model. The Web Dynpro model is based on the Model-View-Controller
(MVC) programming model and allows a clear separation of business logic and
display logic. The development environment provides powerful graphical tools to
layout the user interface.

However, there are other technologies that are supported alongside. Business Server
Pages (BSP) are a page-based Web programming model with server-side scripting in
ABAP. BSPs gives complete freedom when designing UIs since any HTML and/or
JavaScript can be sent to the client. With the HTMLB BSP extension SAP also offers
a library of predefined UI elements that simplify the creation of BSP pages. The
pendant are Java Server Pages which enable page-based web programming with
server-side scripting in Java. In addition there are frameworks on a higher abstraction
level like for instance Guided Procedures (GP). GP provides tools and a framework
for modelling and executing user-oriented workflows. It supports business specialists
in implementing processes and guides casual users through the execution of these
processes.

5.1.2 SAP Exchange Infrastructure (XI)
An important cornerstone of integration technology built into the NW platform is the
SAP Exchange Infrastructure (XI) [19], an Enterprise Application Integration (EAI)
solution supporting also message-oriented / event-driven “hub and spoke” [18] style
business-to-business (B2B) interactions, which loosely couple heterogeneous
applications. This corresponds to the event-based component interaction introduced in
section 3.3.6 as a highly modular architecture style with independent structures whose
variability can be bound very late in software lifecycle.

V1.2 7/30/2007 AMPLE WP3 D3.1 49 of 67

© 2007 by the AMPLE consortium Public

Figure 10. SAP XI Architecture

SAP XI – now being renamed to SAP Process Integration (PI) – runs on the SAP Web
Application Server (SAP Web AS) component. SAP XI reduces integration and
maintenance costs of IT systems by providing a common, central repository for
interfaces. It supports cross-component business process management (BPM) within
the same solution. And, it offers an integrated tool set to help organizations build their
own integration scenarios by defining the appropriate messaging interfaces,
mappings, and routing rules.

5.1.3 Configuration and extension mechanisms in the ABAP stack

Implementation Guide for R/3 Customizing (IMG)
In older existing R/3 applications, the Implementation Guide (IMG) allows the
customization of selected business processes. It lists all necessary and optional actions
required for implementing a SAP system. Its primary purpose is to allow a user to
control and document the whole implementation process. It is also used for making
customer-specific settings in an SAP system.

The base is the Reference IMG, which contains all IMG activities and relevant
documentation. It covers all topics of an SAP system, for example, enterprise
structure, financial accounting, controlling, materials management or production
planning. The IMG guides the attention of a user on which configuration options exist
and which need to be used for certain application fields.

The Implementation Guide is structured hierarchically, its structure follows the
hierarchy of the application components (i.e. Recruitment is located under Personnel
Management). The central parts are so-called IMG activities that enable ways to
customization and perform important system configuration tasks. The implementation
team accesses the documentation part of the IMG to perform settings in an actual
project via the IMG.

V1.2 7/30/2007 AMPLE WP3 D3.1 50 of 67
Enhancement Framework

© 2007 by the AMPLE consortium Public

The Enhancement Framework (EF) was designed to overcome older techniques to
enable users to modify the standard behaviour of an SAP system. The EF tries to
combine the easy maintainability of standard software with the high flexibility of
proprietary solutions while avoiding the drawbacks of both (lack of flexibility in
standard and upgrade issues in customized software). The EF is not a single
mechanism; instead it is the integration of various techniques for modifying
development objects.

In previous releases of the SAP system, there were predefined points at which users
were able to insert so-called modifications. This procedure was supported by a
Modification Assistant, which was able to observe user add-ons (up to a certain
degree). There are several shortcomings that are connected to these modifications:

1. There is no support for system upgrades; an upgrade may render modifications
unusable.

2. It is quite difficult to trace developments made in different parallel system
back to one central system.

3. There is a high cost for testing systems with a lot of user modifications.

The Enhancement Framework has been introduced in SAP NetWeaver 2004s, Release
7.0, and aims to unify possible types of modifications/enhancements as well as
organize enhancements as effectively as possible. At the core of the framework there
is a simple structure consisting of a hook and an element that can be attached to this
hook. The EF is supported by a dedicated tool, the Enhancement Builder.

The main function of the EF is the modification, replacement and enhancement of
repository objects and foreign objects – objects that form the technical basis of an
SAP system. Control over these objects is provided via the Switch Framework, which
is explained in more detail in another section below.

There are three elementary concepts in the Enhancement Framework for
modifying/enhancing development objects:

1. Enhancement Options (EO) defined as positions in repository objects, where
enhancements can be made. Two types of EO exist: explicit options and
implicit. An explicit option is created when points or sections in source code
of ABAP programs are explicitly flagged as extensible. These options are
managed by Enhancement Spots and filled by Enhancement Implementations.
In contrast to explicit options, implicit options are special points in ABAP
programs, which can be enhanced. Examples for such special points are the
end of a program or the beginning of a method. Implicit options can be
enhanced by source code, additional parameters for the interface of function
modules or global classes.

2. Enhancement Spots (ES) are used to manage explicit Enhancement Options
and carry information about the actual position of possible options. A spot can
manage more than one option. ES are directly supported by the Enhancement
Builder which is integrated in the ABAP Workbench.

3. Enhancement Implementations (EI) are the counterpart for ES. At runtime one
or more EI can be assigned to a single ES. There are several types EI: Source
Code Enhancements, Function Module Enhancements and Global Class
Enhancements. Source Code Enhancements represent the direct insertion of
source code at predefined locations in ABAP programs. These locations can

V1.2 7/30/2007 AMPLE WP3 D3.1 51 of 67

© 2007 by the AMPLE consortium Public

be defined by implicit and explicit Enhancement Options. Function Module
Enhancements represent the enhancement of parameter interfaces. For
example a new optional parameter can be added to the interface of a function
module. In addition via Global Class Enhancements new attributes can be
added to repository objects or special pre-/post-methods can be realized,
which are called directly before/after ABAP methods.

Obviously, these concepts can be roughly compared to concepts of Aspect-Oriented
Programming: Enhancement Options resemble Pointcuts, Enhancement Spots map
to Join Points, and Enhancement Implementations to Advices. An example is shown
in Figure 11. In this example a simple program is extended by several enhancement
implementations. Enhancement 1 is inserted at the position marked with
ENHANCEMENT-POINT and can optionally be overwritten by Enhancement 2. In
contrast Enhancement 3 is not inserted at some particular point, but replaces a section
marked with ENHANCEMENT-SECTION.

PROGRAM p1.

WRITE ‘Hello World‘.

ENHANCEMENT-POINT ep1 SPOTS s1.

..

..

..

ENHANCEMENT-SECTION ep2 SPOTS s1.
WRITE ‘ORIGINAL‘.

END-ENHANCEMENT-SECTION.

ENHANCEMENT 1.
WRITE ‘Hello Paris‘.

ENDENHANCEMENT.

ENHANCEMENT 2.
WRITE ‘Hello Berlin‘.

ENDENHANCEMENT.

ENHANCEMENT 3.
WRITE ‘Enhanced‘.

ENDENHANCEMENT.

Figure 11. Example for an ABAP code enhancement

Business Add-Ins (BAdI)
SAP Business Add-Ins (BAdIs) are one of the most important technologies to adapt
SAP software to specific requirements. BAdIs were introduced in Release 4.6 in order
to replace function exits. As of Release 7.0 they are part of the enhancement
framework. They are realized as explicit Enhancement Options (so-called classic
BAdIs). New BAdIs are directly supported by the ABAP runtime environment
through dedicated ABAP statements.

BAdIs are the basis for object plugins that modularize function enhancements in
ABAP programs. There is an explicit distinction between the definition and the actual
implementation of BAdIs. The definition of a BAdI contains an interface, a set of
selection filters and settings for runtime behaviour. The implementation contains a
class implementing the interface and a condition imposed by the filters. An example
of a BAdI structure can be seen in Figure 12. In this example a BAdI A may be used
for tax calculation. The definition of this procedure is made in the Enhancement Spot
for the BAdI, while the actual calculation logic can be found in Implementation 1 for
BAdI A. There may be more than one (two in this example) implementations for the
definition, which can be used mutually exclusive.

V1.2 7/30/2007 AMPLE WP3 D3.1 52 of 67

© 2007 by the AMPLE consortium Public

Enhancement Spot

(for BAdI)

BAdI A

BAdI B

BAdI C

Enhancement Implementation
(for Object-Plugin)

Impl. 1 for BAdI A

Impl. 2 for BAdI B

Enhancement Implementation
(for Object-Plugin)

Impl. 1 for BAdI A

Impl. 2 for BAdI C

Figure 12. Structure for Business Add-ins

Clearly this mechanism is not related to Aspect-Oriented Programming, rather it
resembles patterns from Object-Oriented Programming, where certain behaviours are
defined via interfaces and implemented by a combination of abstract and concrete
classes.

Switch Framework
The Switch Framework (SF) allows the control of the visibility of repository objects
or their components by means of switches. The SF is integrated in the ABAP
workbench and works closely together with the Enhancement Framework. While the
Enhancement Framework enables and supports the actual implementation of
solutions, the SF controls which of those implementations are finally utilized.

The main purpose of the SF is the simplification of an ABAP-based system landscape
by adopting one or more industry solutions in a standard system. Solutions are
delivered with all objects/functions deactivated, only appropriate objects are activated
on demand. For this reason, the Switch Framework is a modification-free
enhancement concept.

The basis of the SF are three main components:

1. A Business Function Set (BFS) is a set of Business Functions and corresponds
to an industry solution. Inside a SAP system several BFS may exist, but only
one may be active at a time.

2. A Business Function (BF) is a self-contained function from a business
perspective and consists of a set of switches. A BF is some kind of building
block for BFS, activating a BF means activating all its switches.

3. A Switch is the elementary component in this context; it is a repository object
that is able to control the visibility of other repository objects. This applies to
single objects like screens or collection of objects like a package. A switch can
be assigned to several Business Functions and vice versa several switches can
be assigned to one Business Function. A conflict arises if two switches turn on

V1.2 7/30/2007 AMPLE WP3 D3.1 53 of 67

© 2007 by the AMPLE consortium Public

objects that may not be used together. This situation is resolved by special
conflict switches and appropriate conflict-resolving enhancement
implementations.

The relations between those elements are shown in Figure 13. In this example the
BFS contains five BF, where the first and the fourth are activated. Both trigger
appropriate switches, which leads to the application of a certain package and some
arbitrary component. The whole structure is similar to feature trees, although there is
only a limited depth of two or three levels, depending on how fine- or coarse-grained
a feature is defined.

Business Function Set

Business Function

Business Function

Business Function

Business Function

Business Function

Switch

Switch

Switch

Switch

Package

Screen

Arbitrary
Component

…

Figure 13. Structure of a Business Function Set

The whole configuration of a Business Function Set is stored in so-called Switch
Business Configurations (SBC). These are data containers with database table entries
for industry solutions. Such solutions may contain several SBC, which can be
activated in subsequent systems of the solution.

There is a differentiation between industry BFS (industry extensions) and generic
BFS (enterprise extensions). The Switch Framework can activate exactly one industry
BFS, but several generic BFS. Examples for industry extensions are media,
telecommunications or oil & gas, as examples for enterprise extensions financial
services, global trade or human resources may be mentioned.

Table 3. Comparison of mechanisms in the SAP ABAP stack

 SAP
Enhancement

Framework (EF)

SAP Business
AddIns (BA)

SAP Switch
Framework (SF)

Concept
Reusable Assets ABAP Code ABAP Code Business Function
Variation Type ABAP Code

Fragments
Business AddIn Set of Switches

Transformation Type Refinement Refinement Composition

V1.2 7/30/2007 AMPLE WP3 D3.1 54 of 67

© 2007 by the AMPLE consortium Public

Granularity Fine, on code
level

Fine to Coarse,
similar to
component level

Coarse, on
business logic
level

Modularity
Level of Separation Structural Structural Structural
Dependency on
Variation

Unaware Unaware Unaware

Binding Model
Binding Time Runtime Runtime Startup Time
Availability Time Runtime Runtime Startup Time
Scope of Binding Program Program Program
Modularity
Asset/Variation
Dependency

Stable
Abstraction

Stable
Abstraction

Stable
Abstraction

Decomposition of
Assets

Possible Possible Impossible

Decomposition of
Variations

Possible Impossible Impossible

Efficiency
Runtime Overhead Highly dependent

on discovery of
enhancements,
medium/high

Highly dependent
on discovery of
enhancements,
medium/high

Implementation
dependent, low

Memory Overhead low low unknown
Compilation Effort low low low
Other Criteria
Complexity low low high
Infrastructural Code low, marking of

enhancement
points

low, definition of
enhancement
spots

unknown

Tool Support yes, via
Enhancement
Builder

yes, integrated in
ABAP
Workbench

yes, integrated in
ABAP
Workbench

Tracing Support no no no

The table above compares three SAP techniques by several important criteria defined
in chapter 2.

The concepts of the techniques are different, depending on the level of abstraction
they are used to vary existing functionality. While EF and BA allow variations on a
code level, SF has got a notion of variation on a higher abstraction level, although this
technique is also an implementation technique. While the first two allow refinements,
the SF can be used for compositional variations. For this reason the granularity is
coarser.

In terms of modularity all three approaches are looking alike. The concerns are
structured into separate modules without clear relations between each other. In
addition the reusable code is unaware of possible variations and will work without
taking the functionality of potential extensions into account.

V1.2 7/30/2007 AMPLE WP3 D3.1 55 of 67

All approaches support the concept of late binding, that is, resolution takes place at
startup- resp. runtime. For EF and BA variability is resolved at runtime, while SF

© 2007 by the AMPLE consortium Public

relies on a database containing the values for switches which are evaluated at startup
time. In addition the actual variations must be initially present at the same point of
time, which allows a decoupled development of assets and variations.

All three approaches feature stable abstractions; unlike in AOP code injections at
arbitrary positions are not possible. The decomposability is different in each
technique; both assets and variations may or may not be decomposed.

Statements about the efficiency of the approaches are relative. Usually the runtime
overhead in dynamic techniques like EF and BA are higher than in static approaches.
The runtime overhead for SW is dependent from the actual implementation and also
depends on the underlying database containing the value of the switches. The same is
valid for statements about the memory overhead. Compilation effort is in every case
low.

All approaches are supported by dedicated tools, but lack tracing support. The
complexity is connected directly with the abstraction layer of the variations.

5.1.4 Business Rule Engines
A key property of SAP customers is that every business is different. Although there
are many common parts (predefined business content and built in business best
practice are actually major reasons why customers buy SAP software), most
companies draw their competitive advantages out of subtle deviations from standard
business processes. These variations often go beyond simply enabling/disabling
switches or changing parameter values. Business experts need means for
“programming in the large”, i.e., wiring state transitions and message-based process
interactions, and “programming in the small”, i.e., being able to model conditional
and/or parallel execution of business process steps, ideally supported by graphical
tools.

The Business Process Execution Language (BPEL) [23] was standardized by the
OASIS group for exactly that purpose. It interacts with external Web Services to
orchestrate higher-level business processes out of these building blocks. Graphical
tool support for constructing orchestrations is available, for instance, using the
Business Process Modeling Notation (BPMN), as a graphical front-end to capture
BPEL process descriptions. Numerous BPEL engines from different vendors already
exist today for executing BPEL-based process descriptions.

An example for such business rule engines is the Business Process Engine (BPE) as
part of SAP XI (see above): The business process engine (BPE) is tightly connected
with the integration engine and fully integrated into the integration server. During
message flow between heterogeneous systems, the engine makes use of all the shared
collaboration knowledge needed to execute a business process. An easy-to-use
graphical modeller gives you access to the message types and interfaces involved in a
process. It lets you define the series and sequence of steps and actions required to run
the process. During execution, the BPE also correlates and links related messages
based on a unique, user-defined identifier.

In summary, there is a clear need for flexible configuration/variation of runtime
behaviour by business domain experts (i.e., end users without sophisticated
programming skills). Hence, DSLs or other formats for representing executable
models are required, which can be dynamically loaded, interpreted and/or compiled at
runtime.

V1.2 7/30/2007 AMPLE WP3 D3.1 56 of 67

© 2007 by the AMPLE consortium Public

5.2 Siemens
Siemens AG is a collection of business units that operate in different domains with
different product innovation cycles and different business models. Therefore there is
neither one common development process for all Siemens business units, nor one
consistent set of development practices for product line engineering. Main differences
are

• Solution versus product driven businesses, e.g. postal automation system
solutions build on a common set of base assets, but have to be customized
heavily for each customer, while telephone switches are standardized
products.

• Product/innovation cycles range from a couple of months for e.g. mobile
phones up to decades for rail traffic control technology.

• Security and reliability requirements, e.g. medical devices or traffic control
systems have to fulfil high reliability and security requirements, while those
requirements are a lot less critical for car entertainment systems.

Here, a rough overview over the implementation practices employed at Siemens.

5.2.1 Implementation Techniques for Variability
For efficiently handling a family software systems in a domain it is essential to know
the domain abstractions and to generalize and separate them with stable interfaces.
Stable interfaces are the most profound mechanism for reuse and exchangeability of
implementations, which is a way to support variability.

Beyond that the following main technical options exist to cope with variations of base
assets during software architecture, design and development :

• Another level of indirection—In this category fall the typical design patterns
used for decoupling and configuration, such as Factory, Strategy, Extension
Interface, Bridge and Adapter, but also general framework principles such as
inversion of control and dependency injection, as intensively used by the
Spring framework [47]. To avoid the mingling of variations and allow for easy
re-configuration, configuration options are externalized into configuration
files, where variations can be expressed declaratively. Certain architectural
patterns, sometimes also referred to as architectural styles, such as event-based
communication and Pipes and Filters architectures allow for more easy
variation, as they inherently decouple a system into exchangeable parts.

• Language support—This includes approaches, such as aspect-oriented
programming, where variations are encapsulated as aspects, template meta
programming, where commonalities are expressed in templates, or domain-
specific languages (DSL) combined with code generation. Further, macro
languages, such as the C++ #ifdef construct, allow to for compile-time binding
in source code.

All of those options are used in Siemens product lines, though generative approaches
including AO are still rare.

V1.2 7/30/2007 AMPLE WP3 D3.1 57 of 67

The typical means are OO in combination with stable interfaces for important varying
domain abstractions. A simple example for the latter is hardware abstractions in
automation and control systems. Devices like motors, sensors or higher level entities
like cameras or conveyor belts, which themselves group sensors and actuators, are
represented as abstract interfaces to the machine control software. The gap between

© 2007 by the AMPLE consortium Public

the interface provided by the hardware element and the interface required by the
software has to be implemented for each device, but typically there are no adaptations
to the control software required if new devices of a known type are integrated.

Nevertheless, developers of component-oriented business applications make
increasing use of aspect-oriented programming, also within Siemens. Frameworks
such as Spring or J2EE compliant containers like JBoss already offer aspect-oriented
extensions. The very existence of frameworks, like EJB, and specific design patterns
to decouple responsibilities confirms the need for AOP. They were developed to
untangle concerns to be able to evolve and reuse infrastructure and business code
separately. The advantage of AOP is that it is not limited to a single domain in the
way that EJB is limited to server-side component computing [40]. Examples for AO
in product lines in Siemens are Spring aspects for security and life cycle management
in a platform for telecommunication applications and JBoss AOP in an IP based
communication service for voice, video, unified messaging and instant messaging for
service aspects.

The typical usage scenario for generative approaches including MDD are currently
either generating glue code for embedding business components in a given platform
or for easily formalize-able code like communication code in embedded systems. An
example for the former is a DSL and a generator for generating interception proxies
for a telecommunication application platform. The DSL allows attaching interceptors
to business components, simulating a simple AO infrastructure. Another example is
the generation of MOST-bus specific communication code for small controllers in a
medical imaging system. Communication partners (device controllers) and the
payload are specified in tables, supported by dedicated editors.

5.2.2 Binding Variability
Depending on requirements like footprint, security, and runtime flexibility different
measures are taken for implementing and binding variability. E.g. telecommunication
enterprise applications need runtime configurability and therefore implement
component containers and composition filters for flexibly changing the runtime
configuration of a system. Automation and drives software requires often small
runtime resource footprint, therefore the variability will be bound at load time through
configuration files. For high security domains, e.g. train traffic control and
supervision systems the code has to be certified by national certification bodies.
Variation is only allowed before compile time, so variability usually gets incorporated
via #ifdefs. The actual code for a variant is specified by preprocessor defines and
must not change after certification. Code for new variants is introduced in new
conditional compilation blocks only.

5.2.3 Platforms
Business units that do not have a dedicated product line engineering approach
nevertheless usually have at least a common base asset for domain specific
infrastructure services called a platform. Such platforms typically care for
communication, persistence, user interface support, some introspection support like
tracing and debugging features and usually typical domain specific extensions like
image processing for optical systems.

A common platform is often the first step towards product line engineering, since
practices like commonality/variability analysis have to be introduced once the
capabilities of a platform reach beyond general purpose middleware responsibilities.

V1.2 7/30/2007 AMPLE WP3 D3.1 58 of 67

© 2007 by the AMPLE consortium Public

Siemens has several examples of platforms that are the basis for further platforms, e.g.
in medical engineering one platform for all imaging systems is the basis for further
platforms in product lines for e.g. magnetic resonance systems or computer
homographs.

5.2.4 Application Engineering and Product Derivation
For product driven business application engineering and product derivation can be as
simple as assembling the product from the pre-built base assets. Often however, and
definitely for solution driven business the product/solution hast to be customized or
even product/solution specific extensions have to be implemented.

The goal however is to avoid implementation and derive new products mostly through
customization. For example in automation systems it is common to have a staged
approach for customization. On the top level the layout of an automation system is
configured according to the hardware and mechanical capability of a machine. On the
next level of configuration machines offer specific functions for calibration, where the
machine either automatically or guided by an operator determines reference positions
or settings and keeps acquired data for production runs. On the last level, a customer
specific customizations can be set by “programming” the machine through teach-in or
with dedicated domain specific programming languages.

Next to configuration files configuration and build management tools are the state-of-
the-art tooling for product derivation. Configuration management tools are used for
keeping and managing variations of base assets and allow to assign a label to a set of
base assets, and for each of them exactly one version, that then form a base line or a
product. Build systems can either use this information or get the information in their
own scripting language on where base assets can be found and set pre-compiler
variables and compiler switches for generating products.

While those mechanisms are proven technologies, the mapping between the
information kept in build scripts and configuration management labels and the
information on the feature set selected by those mechanisms is not well supported by
tools. This information has to be kept separately.

5.2.5 Summary
According to the preceding sections the following techniques for implementing
variability are in use at Siemens.

Development is (mostly) carried out in object-oriented languages. These are used in
combination with stable interfaces for important varying domain abstractions. The
actual implementation relies frequently on design patterns such as Factory , Strategy,
Extension Interface, Bridge and Adapter, which are used for decoupling and
configuration. In addition framework principles such as inversion of control and
dependency injection are applied.

Apart from the actual implementation configuration options are externalized into
configuration files, where variations can be expressed declaratively. It is at hand that
this mechanism supports load time binding of variability. On the side of the system
itself this is supported by component containers and composition filters for flexibly
changing the runtime configuration of the system. Here, appropriate platforms are
used, which form a common base asset for domain specific infrastructure services. In
addition it should be mentioned that aspect-oriented programming is also used, where
variations are encapsulated as aspects. As supporting technologies aspect-oriented
frameworks like JBoss can be mentioned.

V1.2 7/30/2007 AMPLE WP3 D3.1 59 of 67

© 2007 by the AMPLE consortium Public

Design time variability binding can also be identified, applied examples are Template
Metaprogramming, where commonalities are expressed in templates and generative
approaches including MDD, where domain-specific languages (DSL) are combined
with code generation. Macro languages, such as the C++ #ifdef construct, which
allow compile-time binding in source code are popular in areas like Embedded
Systems.

On architectural level architectural patterns are used (which are sometimes also
referred to as architectural styles), such as event-based communication and Pipes or
Filters.

5.3 HOLOS
Besides specific customer driven software development, HOLOS has been developing
software for the European Space Agency using the Agile Modelling Methodology
(http://www.agilemodeling.com).

This methodology is strongly used in projects where variability is not only a
requirement at the end of the project (reusing project modules and lessons learnt from
one project to another are current practice within ESA projects), but also during the
development of the projects themselves.

Motivation for the use of this methodology has its roots in the need to strengthen the
end-user involvement in the project and ensure the compliance with requirements
throughout the development cycles. The active involvement and cooperation of the
end-users is expected and necessary to take advantage of the proposed development
approach.

The Agile methodology envisages three major iterations for the implementation
process, which are:

• Functional Model iteration;

• Design & Build iteration;

• Implementation.

from which only implementation should be examined in this context.

The Implementation phase is the scenario where the latest increments in the iterative
development methodology drive to a prototype that is fully released to the end user.
This represents the transition from the development to the operational scenario –
including final tuning – as well as the effective handing over to the end user, who –
conveniently assisted - will perform the operational validation.

Figure 14. Implementation

V1.2 7/30/2007 AMPLE WP3 D3.1 60 of 67

http://www.agilemodeling.com/

© 2007 by the AMPLE consortium Public

The Implementation is subdivided into four major tasks:

• the “user guidelines” tasks provides the straightforward connection with the
end user and helps to plan the last cycle of iterations;

• the effective implementation of the operational ready prototype;

• the assistance to the users in their operation in the prototype. The Handing
Over Process is expected to have taken place in the meantime.

Prototype presentation, demonstration and effective validation – at the client’s
premises – closes the nominal iteration cycle of this phase.

HOLOS view on the application of this methodology is as follows. The results of the
application of this methodology ensure that the components of software developed are
fully compliant with the end-users’ requirements, since they are involved throughout
the whole process.

Partial test of the prototypes being developed also presents the end-user with possible
limitations of the technology at an early stage, which, in turn, gives rise to revision of
requirements, but also ensures that at the end, the user is presented with a system
whose “usability” is directly what he/she expects. At an early stage the prototypes are
released to the end user where tests are conducted, most of the times with real data
and on real operational conditions. Early test of prototypes helps identifying possible
bottlenecks (e.g. performance) and provides a forum for the discussion and selection
of alternatives that effectively meet the requirements or the revision of requirements
(even those introduced during the process).

The development of the prototypes is always done in a modular fashion where module
interfaces are agreed upfront, thus allowing for reusability. Based on the design of the
early prototype the actual implementation stage starts. The development team
assembles in a meeting where the architectural design is reviewed and the new
modules are defined. At the end of the meeting the team will start producing the
necessary refactoring of the code and produce the new code. Again, all these steps are
closely followed by the client’s team that always provides some feedback on the
produced items.

The end of the implementation produces the review of the test documents. A
requirement vs. test case matrix is produced to confirm that all the final requirements
are covered by a test.

V1.2 7/30/2007 AMPLE WP3 D3.1 61 of 67

© 2007 by the AMPLE consortium Public

6. Conclusion
As shown in chapter 3, there is a big variety of techniques for handling variability on
implementation level. Different techniques are tailored for application on different
scopes and have different qualitative properties. This level may be as low as the
parameterization of a method and as high as the composition of software systems out
of reusable components.

In chapter 2 we defined a concept of a variation mechanism that can capture very
different approaches of variation management. We introduced a coherent terminology
that establishes a unified view on very different variation mechanisms and in this way
enables their comparison. Besides, we described a broad range of criteria that provide
an insight into the design space of the variation mechanisms and form a basis for the
analysis of their differences, advantages, disadvantages and combination possibilities.

The concepts and criteria formulated in chapter 2 were applied in chapter 3, were we
analysed various technologies for their support for variability. Our analysis includes
mainstream technology, such as object-oriented programming languages, design
patterns, frameworks, component technology and conditional compilation. These
approaches are in use for a long time in industry, and therefore are well understood. In
addition, we evaluated a set of more advanced technologies that are of special interest
to the project. Feature-oriented programming, aspect-oriented programming and
model-driven development are falling to this category. The combination of aspect-
oriented and model-driven techniques has not been elaborated intentionally, because
this is the focus of Task 3.3, which will identify respective strengths and weaknesses
of AOP and MDD. The results of this task will constitute a part of the upcoming
deliverable D3.2.

Some of the evaluated approaches, e.g. component technology, are not traditionally
seen as technology for variation management, but the conceptual basis formulated in
chapter 2 allowed us to view these mechanisms from a new perspective and to
identify their support for variability. The criteria formulated in chapter 2 will also be
useful for evaluation of the future contributions of the project.

Variations mechanisms are techniques, but in order to be applied techniques require
support by appropriate tools. Tool support is an important aspect in the evaluation of
applicability of techniques. For this reason additional criteria for the comparison of
tools supporting variation mechanisms have been defined in section 2.2. Here, aspects
like the underlying conceptual and technical concepts, the extent to which a
development process is covered and availability and interoperability have been
analysed.

An overview about tools itself is given in chapter 4. In principle, almost any tool
related to developing software may also be used in the context of software product
lines. To narrow the choice of potential candidates, the set of considered tools has
been limited to tools that have been developed for SPL engineering and management
explicitly.

Another aspect of this deliverable is the analysis of existing practices applied at the
sites of the industrial partners of the AMPLE project. One might expect that the
applied techniques are quite the same. But in fact this is not entirely the case. SAP
relies heavily on in-house technologies for variation handling like the Switch

V1.2 7/30/2007 AMPLE WP3 D3.1 62 of 67

© 2007 by the AMPLE consortium Public

Framework or the Enhancement Framework, while at Siemens a much broader
diversity of external and internal techniques and tools is deployed.

From an abstract point of view however, similarities can be identified. Well
understood “mainstream” technologies like OOP, design and architectural patterns,
conditional compilation, frameworks techniques, Component-Based Software
Engineering, and even Model-Driven Software Development are widely used. On the
other hand, there is a lacking adoption of advanced research approaches like AOP,
Feature-Oriented Programming, Feature Modelling, etc. The reasons are twofold: a)
Maturity issues like scalability for large systems, tool integration, or debugging
support, etc., which are rather out of scope for AMPLE in work package 3; and b)
conceptual problems like resulting in maintainability concerns, where contributions
are possible in the context of work package 3.

For instance, one road block for the adoption of AOSD techniques is the strong
coupling between aspect and base code, which complicates upgrade releases and
allows customers to create unsolicited extensions to core components. Research in
explicit aspect interfaces could address this problem.

Another key challenge is the flexibility to arbitrarily change the binding time of some
variability. Currently, the choice for a certain variation mechanism ultimately
determines the binding time. Further research on Model-Driven techniques seems
promising since MDD allows binding variability to code at various points; it could
even produce runtime-interpretable DSLs out of some models to defer binding of
variability to runtime.

The identified challenges and potentials for improvement will be taken up in the
ongoing Task 3.3. Conclusions for concrete improvements of SPL implementation
techniques will be given in the upcoming Deliverable 3.2.

V1.2 7/30/2007 AMPLE WP3 D3.1 63 of 67

© 2007 by the AMPLE consortium Public

References
[1] N. Loughran, P. Sánchez, N. Gámez, A. Garcia, L. Fuentes, C.

Schwanninger, and J. Kovacevic: “Survey on State-of-the-Art in Product
Line Architecture”, AMPLE deliverable D2.1, March 2007.

[2] Gears home page: http://www.biglever.com/solution/product.html.

[3] Pure::variants home page:
http://www.pure-systems.com/Variant_Management.49.0.html.

[4] VarMod home page: http://www.sse.uni-due.de/wms/en/?go=256.

[5] K. Czarnecki, and U. Eisenecker, “Generative Programming: Methods,
Tools and Applications”. Addison-Wesley, 2000.

[6] C. Krueger, “Variation Management for Software Production Lines”,
Proceedings of SPLC 2002 , pg 37-48.

[7] T. Stahl, and M. Voelter, “Model-Driven Software Development”, Wiley,
2006.

[8] Eclipse website, http://www.eclipse.org/.

[9] EMF website, http://www.eclipse.org/modeling/emf/?project=emf.

[10] J. Herrington, “Code Generation in Action”. Manning, 2003.

[11] D. Batory. 2004. “Feature-Oriented Programming and the AHEAD Tool
Suite”. In Proceedings of ICSE’2004. IEEE Computer Society,
Washington, DC, 702-703.

[12] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, “The
GenVoca Model of Software-System Generators”. IEEE Software 11, 5
(Sep. 1994), 89-94.

[13] E. Johnson, and B. Foote, “Designing reusable classes”, Journal of Object-
Oriented Programming 1, 2 (June/July 1988), 22-35.

[14] G. T. Heineman, and W. T. Councill, “Component-Based Software
Engineering: Putting the Pieces Together”. Addison-Wesley Professional,
2001.

[15] L. Mikhajlov, and E. Sekerinski, ”A Study of the Fragile Base Class”.
Proceedings of ECOOP’1998. LNCS, Vol. 1445, pages 355 - 382.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison-Wesley Inc.,
1995.

[17] B. Meyer, and K. Arnout, “Componentization: The Visitor Example”,
IEEE Computer, vol. 39, issue 7, pages 23-30, July 2006.

[18] C. Bussler. “B2B Integration - Concepts and Architecture”. Springer,
2003.

[19] J. Stumpe, and J. Orb. “SAP Exchange Infrastructure”. SAP Press., 2005.

[20] J. McAffer, J.-M. Lemieux. “Eclipse Rich Client Platform. Designing,
Coding, and Packaging Java Applications”. Addison Wesley, 2005.

V1.2 7/30/2007 AMPLE WP3 D3.1 64 of 67

http://www.biglever.com/solution/product.html
http://www.pure-systems.com/Variant_Management.49.0.html
http://www.sse.uni-due.de/wms/en/?go=256
http://www.eclipse.org/
http://www.eclipse.org/modeling/emf/?project=emf

© 2007 by the AMPLE consortium Public

[21] E. Clayberg, and D. Rubel. “Eclipse. Building Commercial-Quality Plug-
Ins”. Addison Wesley. 2006.

[22] Horst Keller, and Sascha Krüger. „ABAP Objects. ABAP-Programming in
SAP NetWeaver”. Galileo Press. 2007.

[23] “WS-BPEL 2.0 Specification.” OASIS Standard. 2007. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[24] R.S. Pressman, “Software Engineering: A Practitioner's Approach”,
McGraw-Hill, 2001.

[25] B. Meyer. "Eiffel: the Language". Prentice-Hall, Inc., 1992.

[26] openArchitectureWare (oAW) website, http://www.eclipse.org/gmt/oaw/.

[27] P. Tarr, H. Ossher, W. Harrison, M. Sutton. "N degrees of separation:
Multi-dimensional separation of concerns". Proceedings of ICSE'1999.

[28] Y. Smaragdakis, and D. Batory. "Implementing layered designs with mixin-
layers". Proceedings of ECOOP’1998.

[29] I. Aracic, V. Gasiunas, M. Mezini and K.Ostermann. "Overview of
CaesarJ". Transactions on Aspect-Oriented Software Development I.
LNCS, Vol. 3880, pages 135 - 173, Feb 2006.

[30] E. Ernst. "gbeta - a language with virtual attributes, block structure, and
propagating, dynamic inheritance". PhD thesis, Department of Computer
Science, University of Aarhus, Denmark, 1999.

[31] G. Bracha, and W. Cook. "Mixin-based inheritance". Proceedings of
OOPSLA’1990.

[32] P. Wadler. "The expression problem". Posted on the Java Genericity
mailing list, 1998.

[33] E. Ernst, "The expression problem, Scandinavian style". MASPEGHI 2004.

[34] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. "Multijava:
modular open classes and symmetric multiple dispatch for Java".
SIGPLAN Not.35(10), pages 130 - 145, 2000.

[35] B. Meyer. "Object-Oriented Software Construction (2nd ed.)". Prentice-
Hall Inc., 1997.

[36] L. Mikhajlov, and E. Sekerinski, "A Study of The Fragile Base Class
Problem". Proceedings ECOOP'1998, LNCS, Vol. 1445. pages 355 - 382,
1998.

[37] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler, "Making the future
safe for the past: adding genericity to the Java programming language".
Proceedings OOPSLA'1998.

[38] M. Mattsson, J. Bosch, and M. Fayad, "Framework integration problems,
causes, solutions". Communications of the ACM 42,10, pages 80 - 87.,
Oct 1999.

[39] G. Heineman, and W. Councill, "Component-Based Software Engineering:
Putting the Pieces Together". Addison-Wesley Professional, 2001.

V1.2 7/30/2007 AMPLE WP3 D3.1 65 of 67

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.eclipse.org/gmt/oaw/

© 2007 by the AMPLE consortium Public

[40] V. Matena, B. Stearns, and L. Demichiel. "Applying Enterprise Javabeans:
Component-Based Development for the J2EE Platform (2nd ed.)". Pearson
Education, 2003.

[41] J. Lowy, "Programming .NET Components (2nd ed.)", O'Reilly Media Inc.,
2005.

[42] S. Vinoski, "CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments," IEEE Communications Magazine, Vol. 14,
No. 2, Feb 1997.

[43] D. Rogerson, "Inside COM". Microsoft Press, 1997.

[44] OSGi Alliance website, http://osgi.org.

[45] M. Fowler. "Inversion of control containers and the dependency injection
pattern", http://www.martinfowler.com/articles/injection.html.

[46] Pico Container website, http://www.picocontainer.org/.

[47] Spring Framework website, http://www.springframework.org/

[48] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold.
"An Overview of AspectJ". Proceedings of ECOOP'01, LNCS, Vol. 2072.
pages 327-353., 2001.

[49] K. Klose, K. Ostermann, M. Leuschel "Partial Evaluation of Pointcuts".
Proceedings of the Ninth International Symposium on Practical Aspects of
Declarative Languages (PADL), Jan 2007.

[50] C. Bockisch, M. Haupt, M. Mezini, K. Ostermann "Virtual Machine
Support for Dynamic Join Points”. Proceedings of AOSD'2004.

[51] R.Hirschfeld. "AspectS - Aspect-Oriented Programming with Squeak".
Objects, Components, Architectures, Services, and Applications for a
Networked World, LNCS, Vol. 2591, pages 216-232, 2003.

[52] C. Bockisch, M. Haupt, M. Mezini, R. Mitschke "Envelope-based Weaving
for Faster Aspect Compilers". Proceedings of Net.ObjectDays, 2005.

[53] J. Aldrich. "Open Modules: Modular Reasoning about Advice".
Proceedings of ECOOP'2005, LNCS, Vol. 3586, pages 144 – 168.

[54] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, H.
Rajan, "Modular Software Design with Crosscutting Interfaces". IEEE
Software. 23, 1, Jan 2006.

[55] N. Nystrom, X. Qi, A. C. Myers, "J&: Software Composition with Nested
Intersection". Proceedings of OOPSLA'2006.

[56] S. M. Swe, H. Zhang, S. Jarzabek, "XVCL: a tutorial". Proceedings of the
14th international Conference on Software Engineering and Knowledge
Engineering, Jul 2002.

[57] Delta Software Technology, ANGIE website, http://www.d-s-t-
g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm

[58] W3C Consortium. "XSL Transformations (XSLT), Version 1.0", J. Clark,
Editor, W3C Recommendation, November, 1999,
http://www.w3.org/TR/xslt.

V1.2 7/30/2007 AMPLE WP3 D3.1 66 of 67

http://osgi.org/
http://www.martinfowler.com/articles/injection.html
http://www.picocontainer.org/
http://www.springframework.org/
http://www.d-s-t-g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm
http://www.d-s-t-g.com/neu/pages/pageseng/et/common/techn_angie_frmset.htm
http://www.w3.org/TR/xslt

© 2007 by the AMPLE consortium Public

V1.2 7/30/2007 AMPLE WP3 D3.1 67 of 67

[59] A. Alexandrescu: "Modern C++ Design: Generic Programming and
Design Patterns Applied". Addison-Wesley, 2001.

[60] T. Sheard, S. P. Jones, "Template meta-programming for Haskell". In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell.

[61] S. S. Huang, D. Zook, Y. Smaragdakis, "cJ: enhancing java with safe type
conditions". Proceedings of AOSD'2007.

[62] S. S. Huang, D. Zook, Y. Smaragdakis, "Morphing: Safely Shaping a Class
in the Image of Others". Proceedings of ECOOP'2007.

[63] M. D. Ernst, C. Kaplan, C. Chambers. "Predicate dispatching: A unified
theory of dispatch". Proceedings of ECOOP ’1998, LNCS, Vol. 1445,
pages 186 - 211, 1998.

[64] C. Chambers. “Object-oriented multi-methods in Cecil”. Proceedings
ECOOP ’1992, LNCS 615, pages 33 – 56.

[65] K. Czarnecki and C. H. P. Kim. “Cardinality-Based Feature Modeling and
Constraints: A Progress Report”. In OOPSLA’05 International Workshop
on Software Factories (online proceedings), 2005.

[66] K. Czarnecki and K. Pietroszek. “Verifying Feature-Based Model
Templates against Well-Formedness OCL Constraints”. Proceedings of
GPCE'2006 - Generative Programming and Component Engineering.

[67] IBM Rational Software Modeler (RSM) home page:
www.ibm.com/software/awdtools/modeler/swmodeler/index.html.

[68] IBM Rational Software Architect (RSA) Home Page:
www.ibm.com/software/awdtools/architect/swarchitect/.

[69] M. Antkiewicz, K. Czarnecki. “FeaturePlugin: Feature Modeling Plug-in
for Eclipse”. In Eclipse '04: Proceedings of the 2004 OOPSLA Workshop
on Eclipse Technology eXchange, Vancouver, British Columbia, Canada,
2004.

[70] Feature Modeling Plug-in (fmp) Home Page: http://gp.uwaterloo.ca/fmp.

[71] K. Czarnecki, M. Antkiewicz. “Mapping features to models: A template
approach based on superimposed variants”. Proceedings of GPCE’2005 -
Generative Programming and Component Engineering, LNCS, Vol. 3676,
pages 422 - 437.

[72] MofScript home page: http://www.eclipse.org/gmt/mofscript/.

[73] Acceleo home page: http://www.acceleo.org.

[74] Mapping Features to UML 2.0 Models Plug-in Home Page:
http://gp.uwaterloo.ca/fmp2rsm.

[75] IBM Rational Downloads Home Page:
http://www.ibm.com/developerworks/rational/downloads.

http://www.ibm.com/software/awdtools/modeler/swmodeler/index.html
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://gp.uwaterloo.ca/fmp
http://www.eclipse.org/gmt/mofscript/
http://www.acceleo.org/
http://gp.uwaterloo.ca/fmp2rsm
http://www.ibm.com/developerworks/rational/downloads

	1. Introduction
	2. Criteria for Evaluation
	2.1 Criteria for Variation Mechanisms
	2.1.1 Concept of Variation Mechanism
	2.1.2 Expressive Power
	2.1.3 Binding Model
	2.1.4 Validation
	2.1.5 Modularity
	2.1.6 Other Criteria

	2.2 Criteria for Tool Support
	2.2.1 Concepts
	2.2.2 Functionality
	2.2.3 Usage

	3. Existing Variation Mechanisms
	3.1 Object-Oriented Mechanisms
	3.1.1 Parameterization
	3.1.2 Inheritance
	3.1.3 Generics

	3.2 Frameworks
	3.3 Component Technology
	3.3.1 Component-Based Architecture
	3.3.2 Abstraction from Middleware
	3.3.3 Abstraction from Implementation Language
	3.3.4 Independent Deployment
	3.3.5 Service-Based Composition
	3.3.6 Event-Based Architectures

	3.4 Aspect-Oriented Programming
	3.5 Feature-Oriented Programming
	3.6 Conditional Compilation
	3.7 Code Generation
	3.8 Interpreters
	3.9 Configuration Management
	3.10 Conclusion: Elements of Variation Mechanisms

	4. Evaluation of Existing Tools
	4.1 pure::variants
	4.2 Gears
	4.3 fmp2rsm
	4.4 Modelling tools for SPL: the example openArchitectureWare
	4.5 Evaluation

	5. Existing Implementation Practices Applied at Industrial Partners
	5.1 SAP
	5.1.1 SAP NetWeaver Platform
	5.1.2 SAP Exchange Infrastructure (XI)
	5.1.3 Configuration and extension mechanisms in the ABAP stack
	5.1.4 Business Rule Engines

	5.2 Siemens
	5.2.1 Implementation Techniques for Variability
	5.2.2 Binding Variability
	5.2.3 Platforms
	5.2.4 Application Engineering and Product Derivation
	5.2.5 Summary

	5.3 HOLOS

	6. Conclusion

