
© 2007 by the AMPLE consortium  Public 

 
 
 
 
 

 
AMPLE 

Aspect –Oriented, Model-Driven, Product Line 
Engineering 

Specific Targeted Research Project: IST- 33710 
 
 
 

Survey of existing 
implementation techniques 

with respect to their support for 
the requirements identified in 

M3.2 
 
 
ABSTRACT 
This deliverable consists of a list of identified requirements for variability in SPLs 
and their motivation, the descriptions of the surveyed technologies and evaluation of 
each technology with respect to the listed requirements. The survey includes the 
technologies in use at industrial project partners and other promising AOP and MDD 
technologies with a potential to solve identified shortcomings of currently practised 
implementation techniques. 
 

 
Document ID:  AMPLE D3.1 
Deliverable/ 
Milestone No:  D3.1 
Work-package No: WP3 
Type:   Deliverable 
Dissemination:  PU 
Status:   final 
Version:   1.2 
Date:   2007-07-30 
Author(s):   Christoph Pohl, Andreas Rummler (SAP), Vaidas 
Gasiunas (TUD), Neil Loughran (UNLANC), Hugo Arboleda, Fabricio de 
Alexandria Fernandes, Jacques Noyé, Angel Núñez, Robin Passama, Jean-
Claude Royer, Mario Südholt (EMN) 
 

 
Project Start Date: 01 October 2006, Duration: 3 years

V1.2 7/30/2007 AMPLE WP3 D3.1 1 of 67 
 



© 2007 by the AMPLE consortium  Public 

History of Changes 
 
Version Date Changes 
0.1 2007-06-01 Initial Version 
0.2 2007-06-21 Updated section containing evaluation of SAP 

techniques 
0.3 2007-06-29 structural changes, initial conclusion 
0.4 2007-06-29 Sections 2 and 3 by TUD 
0.5 2007-07-03 Sections 2 and 4 by EMN 
0.6 2007-07-06 Sections 3, 5, and 6 by SAP  
0.7 2007-07-13 Update to sections about configuration management & 

SAP techniques 
0.8 2007-07-15 Added sections about component technology and 

interpreters. Section 2 updated by comments of Uwe. 
0.9 2007-07-16 Tool criteria, description and evaluation extended and 

revised by EMN 
0.10 2007-07-23 document consolidation, introduction added 
0.11 2007-07-23 Conclusions for section 3 added 
0.12 2007-07-23 Updated references in sections 2 and 3 
0.13 2007-07-25 Tool criteria & description revised by EMN in section 2. 

Updated references, comparison table and evaluation in 
section 4. 

1.0 2007-07-27 Final review version 
1.1 2007-07-29 Polishing 
1.2 2007-07-30 Broken references fixed 

V1.2 7/30/2007 AMPLE WP3 D3.1 2 of 67 
 



© 2007 by the AMPLE consortium  Public 

V1.2 7/30/2007 AMPLE WP3 D3.1 3 of 67 
 

Table of Contents
1.  Introduction ............................................................................................................ 7 
2.  Criteria for Evaluation ........................................................................................... 8 

2.1  Criteria for Variation Mechanisms .................................................................. 8 
2.1.1  Concept of Variation Mechanism........................................................... 8 
2.1.2  Expressive Power ................................................................................. 10 
2.1.3  Binding Model ...................................................................................... 12 
2.1.4  Validation ............................................................................................. 13 
2.1.5  Modularity ............................................................................................ 14 
2.1.6  Other Criteria ........................................................................................ 16 

2.2  Criteria for Tool Support ............................................................................... 16 
2.2.1  Concepts ............................................................................................... 17 
2.2.2  Functionality ......................................................................................... 18 
2.2.3  Usage .................................................................................................... 19 

3.  Existing Variation Mechanisms ........................................................................... 19 
3.1  Object-Oriented Mechanisms ........................................................................ 19 

3.1.1  Parameterization ................................................................................... 20 
3.1.2  Inheritance ............................................................................................ 21 
3.1.3  Generics ................................................................................................ 22 

3.2  Frameworks ................................................................................................... 22 
3.3  Component Technology ................................................................................. 23 

3.3.1  Component-Based Architecture ........................................................... 24 
3.3.2  Abstraction from Middleware .............................................................. 24 
3.3.3  Abstraction from Implementation Language ....................................... 25 
3.3.4  Independent Deployment ..................................................................... 25 
3.3.5  Service-Based Composition ................................................................. 26 
3.3.6  Event-Based Architectures ................................................................... 26 

3.4  Aspect-Oriented Programming ...................................................................... 27 
3.5  Feature-Oriented Programming ..................................................................... 28 
3.6  Conditional Compilation ............................................................................... 29 
3.7  Code Generation ............................................................................................ 30 
3.8  Interpreters ..................................................................................................... 32 
3.9  Configuration Management ........................................................................... 33 
3.10  Conclusion: Elements of Variation Mechanisms ...................................... 34 

4.  Evaluation of Existing Tools ............................................................................... 36 
4.1  pure::variants ................................................................................................. 36 
4.2  Gears .............................................................................................................. 38 
4.3  fmp2rsm ......................................................................................................... 38 
4.4  Modelling tools for SPL: the example openArchitectureWare ..................... 39 
4.5  Evaluation ...................................................................................................... 41 

5.  Existing Implementation Practices Applied at Industrial Partners ...................... 47 
5.1  SAP ................................................................................................................ 47 

5.1.1  SAP NetWeaver Platform .................................................................... 47 
5.1.2  SAP Exchange Infrastructure (XI) ....................................................... 49 
5.1.3  Configuration and extension mechanisms in the ABAP stack ............. 50 
5.1.4  Business Rule Engines ......................................................................... 56 

5.2  Siemens .......................................................................................................... 57 
5.2.1  Implementation Techniques for Variability ......................................... 57 
5.2.2  Binding Variability ............................................................................... 58 
5.2.3  Platforms .............................................................................................. 58 
5.2.4  Application Engineering and Product Derivation ................................ 59 



© 2007 by the AMPLE consortium  Public 

5.2.5  Summary .............................................................................................. 59 
5.3  HOLOS .......................................................................................................... 60 

6.  Conclusion ........................................................................................................... 62 
 

V1.2 7/30/2007 AMPLE WP3 D3.1 4 of 67 
 



© 2007 by the AMPLE consortium  Public 

Table of Figures 
Figure 1. General scheme of variation mechanisms ...................................................... 8 
Figure 2. Function as a variation mechanism ................................................................ 9 
Figure 3. Aspect as extension mechanism ................................................................... 10 
Figure 4. Configuration of aspects as a variation mechanism ..................................... 10 
Figure 5. Object-oriented framework .......................................................................... 23 
Figure 6. Component interfaces in CBSE .................................................................... 24 
Figure 7. Conditional compilation ............................................................................... 29 
Figure 8. Conditional compilation in Java ................................................................... 30 
Figure 9. SAP NetWeaver Solution Map ..................................................................... 47 
Figure 10. SAP XI Architecture ................................................................................... 50 
Figure 11. Example for an ABAP code enhancement ................................................. 52 
Figure 12. Structure for Business Add-ins ................................................................... 53 
Figure 13. Structure of a Business Function Set .......................................................... 54 
Figure 14. Implementation ........................................................................................... 60 
 

V1.2 7/30/2007 AMPLE WP3 D3.1 5 of 67 
 



© 2007 by the AMPLE consortium  Public 

Table of Tables 
Table 1. Tabular comparison of the tools at the conceptual level ............................... 42 
Table 2. Tabular comparison of the tools at the functional level ................................. 44 
Table 3. Comparison of mechanisms in the SAP ABAP stack.................................... 54 

V1.2 7/30/2007 AMPLE WP3 D3.1 6 of 67 
 



© 2007 by the AMPLE consortium  Public 

1. Introduction 
Software Product Lines (SPL) have been discussed for more than a decade as a 
concept for managing commonalities and variations in features of software product 
families. Consequentially, numerous approaches and implementation techniques 
already exist for binding these feature variations in concrete products. The document 
at hand surveys a range of existing implementation techniques with respect to their 
support for the requirements identified in Milestones 3.1 and 3.2, representing the 
different views of requirements posed by variability management for SPL on 
implementation technology and practices currently in use at industrial partners. 

The way of throwing light on implementation techniques in the context of Software 
Product Lines is not obvious. For this reason this survey starts with the definition of 
adequate criteria that can be used to analyse and compare those techniques in chapter 
2. This chapter is an attempt to identify individual variation mechanisms that are used 
to express variability instead of analysing entire programming languages as a whole 
for their support for variability, because such languages may contain multiple features 
that can be used to implement variation in program code. Due to the diversity of 
mechanisms, which can be as simple as setting property values and as complex as 
generating code based on templates, the mechanisms must be viewed through a 
common scheme, which is described in this chapter. 

Based on the criteria in chapter 2 a wide range of implementation mechanisms is 
enumerated, characterized and classified in chapter 3. The analysed variation 
techniques range from simple ones like parameterisation to complex ones like feature-
oriented and aspect-oriented programming. Chapter 3 also discusses methods that are 
used to manage variability and create actual products in product line engineering, but 
which are not directly connected to implementation in the common sense – 
configuration management may be named here as an example. It should be stated here 
that it is not realistic to evaluate all possible variation mechanisms, because most 
mechanisms in common programming languages are related to handling variability in 
some sense. Although a wide range of techniques is discussed in chapter 3 this range 
has been limited to the most popular ones which do have importance in an industrial 
context and which are directly related to the project in the context of SPL. In addition 
it should be noted that most techniques are not mutually exclusive but can be used in 
conjunction with others. 

Some of the implementation techniques discussed in chapter 3 are complex enough 
that the support of developers applying these techniques by dedicated tools is 
desirable. Although many tools used in software development may be applied in 
implementing variations in program code (i.e. a simple text editor may be used to 
create source code containing the variation mechanism parameterisation), chapter 3 
describes only the tools that cover a range of activities in the development of software 
product lines. Several tools that fulfil this requirement and that provide development 
environments for SPLs are evaluated in this chapter, because they may serve as a 
background for tool development in the context of the AMPLE project, where new 
approaches for tooling for SPLs are to be worked out and integration with mainstream 
approaches is of importance. 

Usually and naturally there is a permanent gap between the state of the art in 
(academic) research and the practices applied in an industrial context. Of course the 
selection of implementation techniques and the way they are applied in industry is 
probably as diverse as the companies that use them. But the analysis of 
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implementation techniques applied by the industrial partners of the AMPLE project in 
Chapter 5 may serve as a representative to get an insight into variation mechanisms 
used in real-world developments. 

This survey concentrates on existing techniques that are already (at least partially) 
applied in practice. Potential extensions and combinations of technologies – with 
special focus on Aspect-Oriented and Model-Driven techniques – will be discussed in 
the upcoming Deliverable 3.2. 

2. Criteria for Evaluation 

2.1 Criteria for Variation Mechanisms 
2.1.1 Concept of Variation Mechanism 
It is difficult to evaluate a programming language (or some other implementation 
technology) as a whole for its support for implementing variability in product lines. 
Programming languages contain multiple features and allow different design patterns 
to express variability, often with different qualitative properties. We will refer to the 
different techniques to express variability as variation mechanisms. Instead of 
analysing entire programming languages and platforms for their support for variability 
we should identify and compare individual variation mechanisms. 

Variation mechanisms can be very different. They can be as simple as object 
properties or class inheritance, or as complex as extension with aspects or template 
based generation. There are plenty of such mechanisms and in order to be able to 
compare them we must view them through a common scheme. In the following we 
will describe such a scheme and its constituents. 

Figure 1 displays the most general structure of a variation mechanism. The primary 
goal of every variation mechanism is to improve reusability. It achieves this goal by 
enabling separation of reusable assets from their variations. Thus, when we talk about 
a variation mechanism we must at first identify the kind of reusable assets it deals 
with and the kind of variation that it supports. The variation supported by a reusable 
asset can be characterized by a set of variants that can be used to specialize the 
reusable asset. We will refer to such sets as variation types and their elements as 
variants. 

 

 

Figure 1. General scheme of variation mechanisms 
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The minimal scenario is that a variation mechanism provides facilities to instantiate 
reusable assets by binding variants to reusable assets. This process can be as simple 
as setting a variable value, or as complicated as performing code generation. In a 
more sophisticated scenario a variation mechanism supports explicit description (or 
implicit inference) of the type of variation supported by a reusable asset and is able to 
validate the reusable asset and variants against the variation type. On the one hand, it 
is validated if a variant belongs to the set of variants described by variation type. On 
the other hand, it is validated, if for all variants that are possible for the specified 
variation type of a reusable asset, generation will succeed and the result will have 
certain properties.  

For a better understanding of the concepts introduced so far consider the example 
depicted in Figure 2. Here our variation mechanism is simply a language feature that 
supports subroutines with one or more parameters. In this case our reusable assets are 
pieces of code implementing subroutines.  The variation type of a subroutine is 
described by the list of its parameters and their types. Variants are tuples of values 
that are passed as function parameters, and binding a variant to a subroutine generates 
a subroutine call with the appropriate parameter values. The two validation processes 
correspond to type checking on caller side (checks parameters against parameter 
types) and type checking on callee side (checks subroutine implementation against 
parameter types).  

  

 

Figure 2. Function as a variation mechanism 

 
Note that the same language mechanisms can be considered from different 
perspectives depending on what is to be reused. For example, we can consider AOP as 
technology to extend a reusable code base with unanticipated variations (Figure 3). 
Then the base code is a reusable asset and an aspect describes the variant. In this case 
the set of possible variants is not specified, and thus no validation is possible.  
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Figure 3. Aspect as extension mechanism 

 
In another scenario (Figure 4) we consider that our product line contains both the base 
code and a set of aspects that advise this code. In instances of the product line we can 
select a subset of the aspects. From this perspective our reusable assets are both the 
base code and the aspects. The variation type is the power set of the set of available 
aspects. The variation type can additionally impose various constraints on this power 
set, for example by specifying which aspects are mutually exclusive. We could 
validate if a given variant (selection of aspects) fulfils the constraints, and if for every 
allowed selection of aspects the weaver will produce a valid program.  

 

 

Figure 4. Configuration of aspects as a variation mechanism 
 

2.1.2 Expressive Power  
In this section, we will talk about expressive power in a relatively narrow sense: as a 
characterization of what kind of variation can be expressed by a variation mechanism. 
In a broader sense expressive power would encompass the issues of further sections, 
such as modularization possibilities and instantiation model.  

First of all we have to identify the object of variation, i.e. the type of the entities 
produced by the variation mechanism. This characteristic influences all other aspects 
of the technology. The type of the produced entities can be functions, data 
structures, objects, modules, collaborations, programs or arbitrary artefacts. 
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The essence of a variation mechanism is a transformation that takes reusable assets 
and a description of the variant as input. Thus the expressive power strongly depends 
on the types of the transformations that we can express: 

• Parameterization. Reusable assets declare parameters that are used at 
different places of the assets and the binding process transforms the assets by 
replacing these slots with given values. There are a large number of 
mechanisms that use this kind of transformation from simple parameterized 
routines to conditional compilation. Technically, mechanisms can be 
implemented in different ways, for example by direct substitution or by using 
substitution environments.  

Substitution mechanisms can vary by the constraints of how and where the 
parameters can be used, for example generic Eiffel [25] classes cannot 
inherit from their generic parameter, but this is possible in C++ templates. In 
C++ conditional compilation the developer can describe only conditionals 
over the parameters, while in template languages such as Xpand [26] the 
developer can describe iteration over the parameters. 

The expressivity of parameterization also depends on the supported types of 
parameter values: 

o Predefined types. Usually simple scalar types and strings. This is 
typical in various configuration languages.  

o Data structures. Constructors to build aggregate types, such as arrays 
or records. 

o Functions.  Functions can be passed as values. 

o Objects. A variant is described by an object, which contains data, 
operations and references to other objects. Object structures are often 
used to define models. 

Further criteria for evaluation of parameterization mechanisms are: 

o Support for default parameters 

o Support for partial binding of parameters 

• Refinement. Variation can be expressed as a delta to the reusable item. 
Variation mechanisms can differ by the ways in which they can modify the 
reusable asset:  

o Extension. A transformation can insert new items in the reusable asset. 
For example AO languages that support only before and after advice 
can insert new behaviour in the advised code. Another example is 
Open Classes that allow extending existing classes with new fields and 
methods. 

o Overriding. A transformation can override parts of the reusable asset. 
An example of overriding is AO languages with support for around 
advice. Note that in case of class inheritance we can have both 
parameterization and overriding.  

• Refinement mechanisms can further differ by granularity of refinement, i.e. 
the positions where new items can be inserted and granularity of parts that can 
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be overridden. In AOP granularity is usually characterized by a joinpoint 
model describing the execution points that can be advised. 

• An important innovation of AO languages with respect to extension 
mechanisms is the possibility to quantify over the points that have to be 
extended in an analogous way. The quantification possibilities can, of course, 
be different and can again be evaluated by multiple criteria.  

• Composition. Reusable assets describe parts of the entity to be generated and 
the variation describes how the parts should be composed.  There are different 
types of composition: 

o Merging. The selected components are merged together. Typical 
examples are the technologies supporting layered decomposition, such 
as mixin layers [28], Hyper/J [27], virtual classes with mixin 
composition [30][29]. In fact, this kind of composition can be derived 
from almost every refinement mechanism. For example, for class 
inheritance we can consider multiple inheritance or mixin-based 
inheritance. 

Merging techniques can differ by the granularity of composition, e.g. 
some of them can compose methods, others not.  

An important issue is how to deal with ambiguities, for example when 
there are alternative implementations for the same method, or when 
there are multiple aspects advising the same joinpoint. Resolution of 
ambiguities can be non-deterministic, automatic or manual. The 
granularity of resolution may vary. 

o Assembly. The components are assembled by writing glue code that 
connects their explicitly exposed interfaces.  

o Event-based composition. Components are implicitly composed in an 
event based system by publishing their events and listening to events 
published by some other components. 

o Contribution. The composed components contribute to some common 
results of computation. A typical scenario is that components are 
registered in a list and expose a common interface. Some manager 
object calls the components in the list and composes their results. For 
example, components can contribute to building the menu of the main 
window. This type of component composition is often used to support 
plug-ins. 

• Arbitrary transformation. This is a category for very powerful variation 
mechanisms that do not have clear constraints on the type of transformation 
that they can do.  

2.1.3 Binding Model 
The binding time of a binding defines the time when a variant is bound to a reusable 
asset. There are different classifications of binding time. However, for evaluating 
variation mechanism we are only interested in the technical aspect of binding times, 
thus, for example, a difference between development time and installation time is not 
interesting if technically the same kind of binding is done.  

So from a technical perspective we can identify the following kinds of binding time: 

V1.2 7/30/2007 AMPLE WP3 D3.1 12 of 67 
 



© 2007 by the AMPLE consortium  Public 

• Compile time (static). The variant is bound before running the software.  

• Run time (dynamic). The variant is bound in a running system. The runtime 
binding can further differ by the possibility to change the binding during the 
lifetime of the varying object. 

Another characteristic is the availability time of the variations, which tells at what 
point varying artefacts must be available. The artefacts can be available either at 
compile time or at runtime. In the latter case, it is also possible to change the 
availability of artefacts during runtime. 

We need to differentiate between binding and availability time, because we can have 
situations where binding takes place at runtime, but the variations must be already 
available at compile time. For example, in the Strategy pattern [16] we can 
dynamically decide which strategy we choose, but our choice is still limited by the set 
of strategies defined at compile time. So we have binding at runtime, but compile time 
availability. To achieve runtime availability in this scenario we must use some 
dynamic loading technology.  

Another important aspect is the scope of binding. Since a reusable asset can be bound 
to different variants, the variation mechanism can differ by supporting the coexistence 
of different bindings of the same asset. For example, if we encode variation by a 
normal class field, we can bind a variant for each object of the class, but if we use a 
static class field instead, we can only bind one variant for all the objects of that class 
in the application. There can be different scopes of binding: program, thread, object, 
module, class, component, collaboration, etc. 

2.1.4 Validation 
In section 2.1.2 we showed that there are big differences in the expressivity of 
variation mechanisms. The question is then why not to use the ones that allow 
expressing arbitrary transformations. The problem with very expressive mechanisms 
is that it is difficult to check automatically (and often manually) if the transformation 
will succeed and produce the desired result. As was already mentioned, there are two 
kinds of validation: the validation of a variant against a variation type and the 
validation of a reusable asset against a variation type. 

In any case, validation needs information about the variation type. First we can 
categorize the variation techniques by the availability of the variation type: 

• Not available. In some variation mechanisms the variation type is neither 
inferred nor explicitly declared. 

• Inferred. The variation type is automatically inferred from the reusable asset. 
Note, that the possibility to infer the variation type implies validation of the 
reusable asset. The classical example here is type inference in various 
programming languages. A less obvious example is inference of the protected 
interface of a class, which is sufficient to check validity of subclasses. 

• Explicitly specified. The variation type supported by the reusable asset is 
explicitly declared. 

Specifications of variation type can differ by their precision. If we describe variations 
as values then the possible precision of describing the intended type of values depends 
on the power of the type system. For example, in a simple object-oriented language 
the type of a variable can only specify the class of the object referenced by the 
variable, while in a more sophisticated system we could also specify the types of the 
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fields of that object. When describing object interfaces we can specify only their 
signature or also some further semantic properties. When describing meta-models we 
can limit ourselves to describing their abstract syntax or we can also describe further 
constraints on the model.  

Availability of a variation type, specified or inferred, normally implies that it is 
checked if variants comply with this type.  

However, for validating reusable assets it is not always the case. In a lot of cases the 
validation is not done at all, or is partial in the sense that it does not guarantee 
successful binding of the reusable asset with all the variants that are possible for the 
specification of the variation type. The types of partial validations can be very 
different. For example, in template languages we may validate the generator 
instructions, but not the code to be generated, or we may validate only if this code is 
syntactically correct.  

In some cases complete validation may be impossible, because variation type is not 
specified precisely enough. For example, if we have a feature model description 
language that cannot define dependencies or conflicts between features we are not 
able to specify all constraints that are necessary to specify which selection of features 
will result in a valid products.  

A lot of variation mechanisms are able not only to validate success of binding of the 
reusable asset with any of the supported variants, but also to guarantee further 
properties of the binding result. For example, a typical guarantee of class 
inheritance is that the signature of a class subsumes the signature of its superclass. A 
lot of variation mechanisms allow one to describe the type of the reusable asset and 
can check if the result of the binding will always have this type.  These possibilities 
again depend on the power of the type system.  

The mechanisms that do not perform validation against variation type must validate 
variants directly against reusable assets. If such validation is done during binding, 
there is no sense to distinguish the validation from the binding. However, a variation 
mechanism with runtime binding can additionally support static validation of 
variants against reusable assets.  

2.1.5 Modularity  
By modularity we understand separation of concerns. There can be however different 
levels of separation: 

• Structural separation. Concerns are separated into different modules, but 
there are no clear relationships between modules.  

• Explicit dependencies. The dependencies between separated concerns are 
explicitly declared. Internal consistency of a concern can be modularly 
checked.  

• Explicit interfaces/encapsulation. Modules expose explicit interfaces and 
hide the remaining details from other modules. As a result, the total 
complexity is reduced, internals can be changed without influencing other 
modules. 

• Segregated interfaces. A module can implement multiple interfaces, which 
are dedicated to different groups of clients. This makes clients of the module 
more stable, because they depend only upon the interface that they need.  
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• Independent structure. There is no preplanned alignment between the client 
of a module and the module. They are integrated afterwards.  

The higher levels of separation primarily increase the stability and reusability of the 
modularized concerns, but require more development effort and in some cases may 
prohibit unanticipated variation.  

Another important general criterion for evaluating modularization possibilities is the 
granularity (or flexibility) of separation, e.g. modules can be used to segregate 
individual classes, methods, or even intra-method constructs  

A primary modularization characteristic is the dependency of reusable code on 
variation. Here we can identify the following categories: 

• Unaware. Reusable code is completely unaware of the variation. This is a 
typical case when varying code simply uses the reusable code or extends it.  

• Stable abstraction. The dependency of reusable code on the variation is 
described by a stable abstraction. The reusable code uses this abstraction 
without differentiating between variants. This is for example achieved by 
subtype polymorphism. 

• Inlined variation. The reusable code differentiates between the variants and 
this differentiation is done simply in-place using conditional structures. This 
characteristic applies to variation management with switch/case statements in 
Java and for conditional compilation in C/C++. 

• Modularized variants. The reusable code must differentiate between the 
variants, but the pieces of code that have different dependencies on variation 
are separated from each other, and the correct piece is selected by some static 
or dynamic dispatch mechanism. 

The separation method depends on the type of transformation. In case of 
parameterization, the separation is based on dispatch. In case of compositional 
variation, it is important to separate the components. In both cases we should 
evaluate the level and granularity of separation. 

In case of parameterized variation, we should evaluate the expressivity of dispatch: 
if dispatch is based on subtype relation or on predicate dispatch [63]. In the first case, 
dispatch expressivity depends on the expressivity of the type system.  

We must also evaluate the possibility of decomposition of reusable assets, because it 
can be that a variation mechanism constrains modularization possibilities. A typical 
example of such a restriction is the expression problem [32][33]. For example, if 
variation is described by an inheritance hierarchy in Java, all operations, whose 
implementation depends on these classes, must be defined in the modules containing 
these classes, while MultiJava [34] allows defining such operations in separate 
modules. 

The possibility of decomposition of variation type descriptions may also be an 
important issue if these descriptions are large enough. For example, one technology 
may require that a feature model must be defined as a whole, while another 
technology may allow decomposing the feature model into subtrees even more 
flexibly. 
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2.1.6 Other Criteria 
The convenience of using variation mechanism is an important criterion in SPL 
engineering, because configuration of SPL instances sometimes is done by people less 
experienced in software engineering, for example during deployment. To evaluate the 
convenience we can evaluate: 

• the complexity of the language,  

• the amount of infrastructural code to support the mechanism compared to a 
fixed binding between the reusable asset and the variant, 

• the availability of graphical tools,  

• the conceptual and optical distance between the input assets and the 
binding results. 

The last point is also tightly related to traceability. Traceability is understood in the 
sense of the ability to match the structure of the binding (generation) result against the 
source assets. Traceability is very important for managing changes and debugging. 

The efficiency of a variation mechanism can be evaluated through the following 
criteria: 

• Runtime performance overhead in terms of time and memory 

• Amount of generated code 

• Performance of transformation and validation steps 

• Support for incremental generation 

2.2 Criteria for Tool Support 
Since SPLs are concerned with software artefacts relevant to all phases of the 
software lifecycle and at all abstraction level, almost any tool relevant for software 
development may, in principle, be used in the context of SPLs.  In order to define a 
significant set of criteria, we have delimited the set of considered tools by considering 
mainly tools that have been explicitly developed for SPL engineering; we have, 
however, also taken into account features relevant to SPLs but present in general tool 
suites for software modelling. 

SPLs require the management of variability over the whole development process, 
involving, in particular, software artefacts described at a large range of different 
abstraction levels. Hence, tools for product development using SPLs should support 
an integrated development process that allows creating software artefacts, ensuring 
properties, and generating tests as well as product quality level code. 

In this section we present the criteria used to evaluate existing tools for SPLs with 
respect to their support for integration of the development process. The focus lies on 
the core concepts supported by the tools, coverage of development activities over the 
development lifecycle and integration opportunities with other tools that are 
potentially relevant to the development of SPLs. The overall set of criteria we 
consider in this section includes, partially with adaptations, the set of criteria 
introduced in the previous section. We have made some adaptations in order to take 
into account the fact that some of the previously presented criteria are not applicable 
to tools or at least have a different range of possible options. In Chapter 4 we evaluate 
four different tools (three major SPL specific tools and a general-purpose tool for 
model-driven engineering) with respect to the criteria presented here. 
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We consider three main groups of criteria: (i) the underlying conceptual and technical 
concepts, (ii) the extent to which a tool covers the development process and different 
target implementation infrastructures (such as a component model on top of which the 
SPL is implemented) and (iii) usage-related parameters, such as the availability of the 
tool and how it may interoperate with other tools.  

2.2.1 Concepts 
What are the abstract and technical concepts underlying the tool? 

1. Variation mechanisms: the techniques used by a tool to express variability. 

• Variation management principle: The general way the variability is 
managed. 

• Reusable Assets: the kind of reusable assets that the variation mechanism deal 
with, e.g. tools may deal with any kind of asset in a generic way, or provide 
support for more specific assets such as definition of requirements, language-
specific source code, etc. 

• Variation types: the set of variants that can be used to specialize the reusable 
assets, e.g. files, requirements, source code structures, etc. 

• Variants: the concrete elements of a variation type that can be selected to 
specialize the reusable assets, e.g. concrete files, specific requirements, etc. 

2. Expressive power 
1. Transformation type: expresses the kind of transformations on assets, e.g. 

tools supporting general assets may support transformations such as file 
generation, text substitution, etc.; tools supporting specific assets may support 
adding or removing requirements, or language-specific transformations such 
as refinement, composition or arbitrary transformations, etc. 

2. Granularity: the smaller unit that can be modified in an asset, e.g. the 
granularity for tools supporting generic asset may be files, blocks of text, etc.; 
the granularity for tools supporting specific assets may be requirements, 
source code structures, components or business logic. 

3. Binding model 

• Binding Time: the time when the binding between assets takes place. 

• Availability time: the time when varying artefacts must be available, e.g. 
some tools may need variants to be completely available before binding, 
whereas other tools may need variants to be just partially available, and they 
are completed in the binding. 

• Scope of binding: the scope, in term of a software artefact, where the binding 
applies. 

• Validation: how tools ensure the correctness of the variation mechanism 

• Availability of variation types: existence of variation types that allows 
validating variants (variant complies with its type). Variation types may be not 
available, inferred or explicitly specified, e.g. the variation type can be 
explicitly defined as a file, and then it has to be checked that all the variants 
are effectively files. 
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• Validation of binding: the way to ensure that asset instances are correct. It is 
related to the correct selection of features imposed by possible existing 
constraints. This validation can be possible or not possible. 

4. Modularity 

• Structural separation: the structural mechanisms that the tool provides to 
separate concerns, e.g. a tool can provide a notion of modules, and/or ways of 
grouping features. 

• Explicit dependencies: tells how dependencies between modules are 
declared, e.g. some tools can provide explicit dependency declarations, 
whereas for other tools the dependencies can be implicitly inferred. 

• Segregated interfaces: tells how a module or a complete asset can be 
instantiated for different groups of clients. 

• Asset-variation dependency: the dependency of reusable code on variation, 
e.g. an asset in a tool can be defined without depending on the different 
variants for the varying part of the asset. 

• Decomposition of assets: tells how the variation mechanism of a tool allows 
an asset to be decomposed in different parts that can be treated independently, 
e.g. the variation mechanism of some tools could restrict the decomposition of 
an asset, whereas in others such a separation could be always possible.  

• Decomposition of variation descriptions: tells how the descriptions of the 
variation can be decomposed. 

2.2.2 Functionality  
What are the main functionalities provided by the tool in terms of SPL and product 
lifecycle management?  

1. Process coverage 

• Definition of SPL: feature models, DSL 

• Analysis/validation of SPL (domain space): Are there any specific 
functionality for domain space analysis or validation, for example analysis of 
feature models, domain requirement, SPL architecture or reusable assets, etc.?  

• Analysis/validation of products (application space): Are there any specific 
functionality for application space analysis or validation, for example 
validation of product configuration, product requirements, product 
architecture, product assembly, etc.? 

• Product assembly: Are there any specific functionality to create a product by 
assembling  assets? 

• Product testing: Are there any specific functionality to test products? 

• Product execution: Is there a specific support for product execution? 

• Product maintenance: Are there any specific functionality for product 
debugging or evolution? 

• Support for specific application domains: Are there any specific 
functionality for one or more specific application domains? 

2. Expressiveness of feature model editors 
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• Hierarchy of features: boolean 

• Feature selection: one-of, more-of, optional, mandatory 

• Support for features labelled with values: boolean 

• Assertions on feature values: boolean 

• Representation of features: graphical, textual 

• Multiple feature models: boolean 

• Feature-model dependencies: boolean 

3. Product engineering 

• Support for managing feature-model instances: boolean 

• Support for product instantiation: boolean 

• Execution environment: boolean 

• Editors to manage dependencies between feature models: boolean 

• Code generator: boolean 

• Implementation targets: Are there one or more specific programming 
languages as implementation target of the tool or is it a technology-agnostic 
tool? 

2.2.3 Usage 
All criteria related to the usage of the tool. 

• Availability: free, licensed, etc. 

• Configurability: Is the tool configurable for different tasks? 

• Extensibility: is it possible to extend the tool and by what means? 

• Interoperability: how does the tool interoperate with other tools? Does it 
support the use of different file formats? 

• Usability: Is the tool easily usable and in which context? 

3. Existing Variation Mechanisms 
This section discusses approaches for implementation of variability in software 
product lines and evaluates them according to the criteria of Section 2.1. It is not 
realistic to evaluate all possible variation mechanisms, because most mechanisms in 
programming languages and other implementation technology deal with some kind of 
variability. Therefore, we will evaluate the mechanisms that are most popular in 
industrial applications and the mechanisms that are directly relevant to the project, 
such as aspect-oriented programming and code generation. It should also be noted that 
the approaches are not mutually exclusive of one another. For example, some form of 
configuration management is generally used in any real world approach while many 
component-based approaches may use object-oriented techniques at their core. 

3.1 Object-Oriented Mechanisms 
Object-oriented programming languages such as C++ and Java are at the core of the 
mainstream implementation technology. In this section we evaluate the basic variation 
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mechanisms that are available in such languages. Since Java is selected as base 
implementation language in the project, we refer to object-oriented mechanisms as 
they are implemented in Java, unless noted differently. 

3.1.1 Parameterization 
The most common variation mechanisms are based on parameterization. 
Parameterization in object-oriented languages is available for different scopes: 
methods are parameterized by their explicit parameters; objects are parameterized by 
the values of their fields and constructor parameters; parameterization of classes and 
packages is possible by setting values of static class fields.  In this way we can 
parameterize reusable assets of different size: methods, classes, and packages. 

The types of parameters in object-oriented languages are usually object types, which 
can describe primitive types as well as complicated models. The variation type is 
normally described by defining interfaces, and variants are the classes implementing 
these interfaces. Since functions can be modelled as objects, parameterization by 
functions is also possible, but usually requires a significant amount of infrastructural 
code.  

By giving initial values to fields and by setting them after object construction we 
achieve the effects of default parameters and their partial binding. This is, however, 
not possible for method parameters. 

The parameters are bound at runtime. The field values can be freely changed after the 
binding. The classes implementing the variants must normally be available at compile 
time. Nevertheless, because of dynamic class loading and reflection in Java it is 
possible to postpone availability of variants until runtime. 

Statically typed object-oriented languages such as Java provide complete static 
validation of both reusable assets against the declared parameter types as well as 
validation of the actual parameter values. Usually only the signature of the parameters 
is specified. Languages such as Eiffel [25] allow definition of semantic properties of 
the parameters in form of pre- and post-conditions, but they are not validated 
statically.  

Polymorphism and late binding enable a quite good level of separation between 
reusable and varying functionality: The reusable assets use the varying functionality 
over stable abstraction defined by the interfaces of their parameters. The 
implementations of different variants are separated from each other, since they are 
defined in different classes.  

The latter properties characterize the major qualitative advantage of object-oriented 
parameterization methods over traditional procedural programming, where variations 
are usually handled by conditional statements. Besides, dispatch over virtual tables 
makes the object-oriented selection mechanism more efficient than selection using 
conditionals. 

The disadvantages of parameterization as variation mechanism are preplanning and 
infrastructural code. The variation possibility should be prepared in advance by 
defining necessary parameters and interfaces. For parameterization using object fields 
we must additionally define constructors and setter methods. 

Object-oriented languages impose limitations on decomposition of the definition of 
variation type and implementation of variant. All the code that depends on a variant 
must be defined in the module/class that represents this variant. It is not possible to 
distribute the variant-dependent code in multiple modules. 
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As previously mentioned, the object-oriented mechanisms support parameterization 
with method, class, and package scope. However, there is no explicit support for 
parameterization at the dynamic scopes larger than a single object. If we want that a 
collaboration of objects share a parameter value, we must implement infrastructure 
that passes this value explicitly from object to object. 

Design patterns, such as Singleton, Strategy, State, Command, Composite [16], 
describe special cases of object-oriented parameterization.  Singleton describes the 
case of parameterization on the scope of an entire program. Strategy, State, Command 
and Composite describes parameterization over object fields in order to deal with 
variation in different situations: Strategy describes variation of an algorithm, State – 
variation of object state, Command – variation of an action to be performed, 
Composite – variation of parts of a data structure.  

3.1.2 Inheritance 
In class-based languages, such as Java, inheritance is necessary for achieving 
(inclusion) polymorphism and late binding, the advantages of which were discussed in 
the previous section. In this section we will evaluate another usage of inheritance, 
which is called implementation inheritance, and is the only form of refinement 
directly supported in object-oriented languages.  

With implementation inheritance, the reusable functionality is captured by a base 
class and the varying functionality by its subclasses. Since a class can have multiple 
subclasses, it is possible to define multiple variations of the same base functionality. 
The extensions can override the reusable functionality at the granularity of methods.  

There is no explicit description of variation type. The extensions are validated 
statically against their base. The possibility of decomposition of the reusable and 
varying functionality depends on the support for multiple inheritance. In a single 
inheritance language, such as Java, reusable and varying functionality can be 
organized only along a strict linear hierarchy.  

The main advantage of inheritance is the possibility of unanticipated variation, which 
in this case is known as the Open-Closed Principle [35], because the base classes are 
unaware of their extensions. Besides, inheritance requires a very minimal amount of 
infrastructural code and can be very efficiently implemented. 

The major disadvantage is a low level of separation (explicit dependency) between the 
varying and the reusable code, which makes evolution of the reusable code 
problematic. The problem of lack of contract between a class and its subclasses is also 
known as the Fragile Base Class Problem [15]. 

Besides, inheritance is limited to static variation. A solution for dynamic refinements 
in object-oriented languages is described by the Decorator design pattern [16]. The 
problem is that this solution invalidates some of the advantages of inheritance: it 
requires a lot of infrastructural code and is much less efficient. 

Some of the problems of inheritance as available in mainstream object-oriented 
languages such as C++ and Java are alleviated by mixin-based inheritance [31]. 
Mixins are classes, which cannot be instantiated, that are parameterised by their 
superclass. Unlike standard subclasses, mixins are explicitly abstracted from their 
superclass. This makes them more stable and reusable. 
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Mixins can also be used to express a simple form of compositional variability: we can 
produce different variations of a class by combining different lists of mixins. A 
similar effect can be achieved with multiple inheritance. 

3.1.3 Generics 
Generics is a mechanism for parameterization of classes by types. The well-known 
languages supporting generics are Java [37] and Eiffel [25]. A typical application of 
generics is the implementation of collection classes that can be used with different 
element types. 

The main difference between generics and simple parameterization is that parameters 
are not used in expressions, but in types. It is a static variation mechanism. A 
variation type is expressed by constraints on the parameters types. Java and Eiffel 
provide an efficient implementation of generics and a complete modular validation of 
generic classes.  

C++ templates are an alternative solution for parameterization of classes by types. 
The mechanism is semantically more powerful than generics because it additionally 
enables dispatch of a generic class by its parameters by a mechanism called template 
specialization: beside generic implementation of a class, the developer can provide its 
specializations for specific parameter types. The disadvantages of C++ templates are a 
lack of modular validation of template classes and duplication of generated code. 

3.2 Frameworks 
Johnson and Foote describe an object-oriented framework as “… a set of classes that 
embodies an abstract design for solutions to a family of related problems, and 
supports reuse at a larger granularity than classes.” [13] The major characteristic of 
object-oriented frameworks that distinguishes them from simple class libraries is that 
the control flow is managed by the framework rather than by the application classes. 
Application specific behaviour is triggered at predetermined extension points or “hot 
spots” in the framework.  

Extension points in object-oriented frameworks are implemented using inheritance 
and late binding. The varying code is defined in subclasses of the abstract classes of 
the framework, and is used in a polymorphic way in the framework. The Observer 
design pattern [16] describes a solution supporting multiple variations at the same 
extension point. In procedural languages such as C the extension points are usually 
implemented using call-back functions.  
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Figure 5. Object-oriented framework 

Frameworks are a mainstream solution for large-scale reuse with explicit support for 
variability. In this case the framework is the reusable asset, and the variants are the 
application-specific subclasses of the classes of the framework. Frameworks combine 
both parameterization and refinement, because they are explicitly parameterized by 
their extension points. On the other hand the framework classes can be extended by 
inheritance, also in unanticipated ways.  Refinements are not possible in so-called 
black-box frameworks.  

The variations are bound to the framework at runtime, and runtime availability of the 
variants can be achieved using reflection mechanisms for class loading. The 
framework is separated from its variations by explicit abstractions. Extension of the 
classes of the framework can lead to tight dependency of varying code on the 
framework. However, it is not the case when the framework is used only in a 
preplanned way over explicit abstractions.  

Frameworks are well suited only for preplanned variations that must be supported by 
an infrastructure prepared for this purpose. One of the problems with frameworks is 
the size and complexity of the infrastructural code to support variations. If a variation 
is of crosscutting nature, the infrastructural code to support this variation will be 
scattered in multiple places across the framework. 

Another big problem is that frameworks tend to be monolithic. Usually the framework 
and the application code are separated by strict abstractions, but there are tight 
dependencies between internal parts of the framework. The consequence is that the 
framework must always be used as whole even if an application needs only a part of 
its functionality. 

Since the extension points of the frameworks are described by interfaces, each 
variation must be defined in a single class. Such a mechanism is not well suited to 
describe more complicated variations that are implemented by multiple classes. This 
problem is addressed by the Abstract Factory design pattern [16], but this pattern 
requires additional infrastructural code and has problems with extensibility. Another 
problem is that the type systems of object-oriented languages are not powerful enough 
to express covariant dependencies between the classes that implement the variations 
with the consequence that the covariant classes must use type casts to access the 
functionality of each other. 

Usage of multiple frameworks in an application poses further problems, which are 
discussed in detail in [38]. 

3.3 Component Technology 
Component-based software engineering (CBSE) [14] refers to the development of 
software systems from reusable components. There is no general consensus on the 
definition of the concept of component. In the broadest sense a component is any 
reusable piece of software with a well-defined interface. From this perspective we can 
consider modules and classes in programming languages as components. However, 
other definitions impose further requirements on components: they must be 
independently deployable, abstracted from their dependencies on other components, 
abstracted from middleware and so on. In the following we will discuss different 
aspects of component technology with the focus on their support for variability. 
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3.3.1 Component-Based Architecture 
The basic principle of component-based architecture is decomposition of software 
into smaller parts that communicate over explicitly defined interfaces. The 
components can be further hierarchically decomposed into smaller components. In 
order to avoid tight dependencies, components do not instantiate each other directly 
but rather declare their dependencies in form of expected interfaces. The interfaces 
implemented by the component itself are then called provided interfaces. The 
composition of components is performed on a higher level by linking expected 
interfaces to compatible provided interfaces. The components can be composed using 
a conventional programming language or an architecture description language (ADL), 
which can express the composition more concisely and visualize it. An overview of 
ADLs is given in [1]. 

 

ComponentRequires ProvidesComponentRequires Provides

 
 

Figure 6. Component interfaces in CBSE 

 
Component-based architectures express compositional variability. The components 
are reusable assets and variants are different compositions of components. The 
provided and expected interfaces of components define constraints for composition 
and thus they can be seen as specification of variation type.  

The main advantage of component-based architectures is their strong support for 
modularity. Components are separated from each other at the level of segregated 
interfaces. The components as well as their compositions are validated in a modular 
way, which also enables good support for separate compilation. 

The problem with component-based architectures is their assumption that software 
can be easily decomposed in a strictly hierarchical way. Components are usually 
implemented as classes or as groups of classes, which means that they cannot cross 
class boundaries. A hierarchical architecture also implies that subsystems that are 
defined as compositions of components are responsible for completely defining 
interactions between these components. The problem is that variations in product line 
are often defined in terms of features that cross boundaries of classes and their 
compositions.   

Component-based composition is not suitable for expressing unanticipated variability. 
It is difficult to extend components and their compositions with new functionality or 
to integrate components in unanticipated ways.  

3.3.2 Abstraction from Middleware 
One of the primary goals of the popular component frameworks such as J2EE [40] 
and .NET [41] is separation of business logic from various non-functional concerns, 
such as distribution, persistence, transaction management, and security. These 
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concerns are then specified concisely using domain-specific abstractions, which leads 
to significant reduction of code size and complexity.  

Separation of non-functional concerns also enables their independent variation. For 
example, separation of the distribution concern enables independent variation of 
physical architecture of the system. Complete separation of some other concerns such 
as persistence or transactions appeared to be less useful in practice. Therefore, these 
concerns are often specified in class annotations. This means that they are not 
syntactically separated from the business logic. Nevertheless, such a solution still 
supports variation of implementation of non-functional concerns. For example, if 
persistence and transactional logic of a class is specified by standardized J2EE 
annotations, this class can be used in different application frameworks. This means 
that declarative specifications of non-functional concerns enable variation of the 
platform.  

Technically, declarative specifications of non-functional concerns are implemented 
using the approaches for implementing DSLs that are discussed in Section 3.7 and 
Section 3.8. 

3.3.3 Abstraction from Implementation Language 
An interesting feature of the CORBA [42], .NET [41] and COM [43] frameworks is 
support for multiple programming languages. A software system can be built of 
components implemented in multiple programming languages. In CORBA and COM 
this is enabled by language independent interface specifications, while .NET achieves 
this by translating all specific languages to a common intermediate language. From 
the perspective of variability management, these technologies enable composition of 
reusable assets that are implemented in different programming languages. 

3.3.4 Independent Deployment 
Using programming languages, such as C++, a change in one module of an 
application usually requires recompilation of the modules that use it. Besides, there is 
no possibility to install an application in parts or to replace parts of an already 
installed application.  

Such a situation is not acceptable from the perspective of component-based 
development, because components can be developed independently from each other 
by different vendors or teams. It may be necessary to upgrade components of a 
software system independently of each other or to install new components providing 
new functionality. From the perspective of variation management independent 
deployment is interesting, because the components that implement different variations 
can be added to the system independently from each other. Since the set of available 
components is known only at runtime, independent component deployment enables 
runtime availability of variations. 

Independent deployment of components is enabled by technologies supporting some 
form of dynamic linking and naming service. For example, dynamic deployment of 
COM components is based on dynamically linked libraries (DLL) and entries in 
Windows Registry that relate component names to corresponding DLLs.  
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and libraries in an installed system. OSGi [44] is a Java-based framework that 
supports a more controlled form of dynamic loading. The components in OSGi are 
bundles of Java classes and other artefacts that declare dependencies on other bundles. 
OSGi not only loads and links the bundles at load time, but also provide facilities to 
install, start, stop, update and uninstall them in a running system. 
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3.3.5 Service-Based Composition 
So far we discussed explicit composition of components, in which the developer must 
explicitly link provided and expected interfaces of individual components. In a lot of 
cases this matching can be done automatically. The interfaces correspond to the 
services that are provided by or needed for the components, and a component that 
needs some service can be automatically linked to a component that provides that 
service. Technically, this can be achieved either by service registries or by 
dependency injection [45]. 

An example of service registry mechanism can be found in the OSGi framework. The 
framework maintains a registry, which maps services (identified by corresponding 
interfaces) to objects that provide them. An object that needs some service can use the 
registry to retrieve the list of its providers. Service providers can be registered and 
unregistered at runtime. The cases when there is one provider or there are multiple 
providers for certain service must be handled by the users of the service. 

In the dependency injection approach each component belongs to some container, 
which is responsible for finding and passing the necessary services to the component. 
There are at least 3 different dependency injection techniques: interface injection, 
constructor injection, and setter injection. These techniques differ in the way the 
container passes services to the component. For example, in setter injection a class 
declares a setter method for each service that it needs. Each setter has a parameter of a 
type that identifies the service. Dependency injection is implemented in Pico 
Container [46] and in the Spring framework [47]. 

Dependency injection requires much less infrastructural code than the service registry 
approach, but service registries can be useful when more flexibility is needed, because 
it supports multiple providers for the same service and possibility to register and 
unregister them at any time. 

Service-based composition in general implements a somewhat different type of 
variation than explicit component composition. The variant in this case is described as 
a set of selected components, while their wiring is determined automatically. Thus it 
is less expressive than explicit definition of the wiring, but on the other hand it is 
much more concise in the cases when the expressivity is sufficient.   

The automated composition is also less reliable, because there is no static validation 
that guarantees that all components will be connected to all services that they need.  
However, by sacrificing some static safety service-based composition provides more 
flexibility for runtime variation of component composition. 

3.3.6 Event-Based Architectures 
The behaviour of object-oriented architectures is often seen as interactions in which 
objects pass messages (or events) to each other. However, there are certain constraints 
related to this form of interaction: the message is sent from one sender to one receiver, 
the sender must have a reference to the receiver, the message is sent synchronously. 
The primary goal of event-based architectures is to enable more flexible patterns of 
communication between components: multiple senders and receivers, event filtering 
by various conditions, asynchronous communication, etc. 
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synchronous calls between two components, while in event architectures the calls can 
be asynchronous and an event can be consumed by multiple components. Thus, event-
based architectures provide more expressivity for defining connections between 
components. 

3.4 Aspect-Oriented Programming 
Aspect-oriented programming addresses the problem of separation of scattered and 
tangled concerns. Aspect-oriented languages enable modularization of functionality 
that crosscuts boundaries of classes, and provide quantification mechanisms for 
concise expression of the relationship between the crosscutting and the base 
functionality. In this evaluation we will use AspectJ [48] and CaesarJ [29] as 
reference aspect-oriented languages, because AspectJ is the de facto standard in 
industry, and CaesarJ is a language developed by one of the project partners. 

From the perspective of variability management, aspect-oriented languages are 
interesting, because they enable separation of crosscutting varying functionality from 
the rest of the program. The transformation supported by aspects is refinement with 
possibility of overriding. The overriding is possible only in the aspect-oriented 
languages that support so called around advices. 

The granularity of extension supported by an aspect-oriented language depends on its 
jointpoint model, because joinpoints are the places where aspects can attach new 
functionality. AspectJ and CaesarJ support joinpoints that cross boundaries of 
methods, e.g. method calls and field accesses. In this way extensions at very fine level 
of granularity are supported. AspectJ also supports introductions that enable extension 
of the static structure of existing classes. They can introduce new fields, new methods 
and inheritance relations. 

The conciseness of expression of the extensions largely depends on the pointcut 
language, which determines the possibilities of quantification over joinpoints. The 
quantification in AspectJ and CaesarJ is mostly based on the static structure of 
programs. Quantification over various dynamic conditions is more powerful, but its 
efficient implementation is still a topic of ongoing research. [49] 

Since in AspectJ all active aspects must be known at compile time, it is not possible to 
bind a variant at runtime. CaesarJ enables runtime binding by supporting dynamic 
aspect instantiation and activation. The aspects that can be selected for activation 
must still be available at compile time. Runtime availability is possible only in 
implementations that support load-time or runtime weaving [50][51].  

The main advantages of aspects are support of variation of crosscutting functionality, 
possibility of unanticipated variation and small amount of infrastructural code.  

The biggest problem of aspects is their impact on modularity. The separation of the 
aspects from the modules that they advise is only at the structural level. It is difficult 
to understand the dependency between the aspects and the base code and to support 
safe evolution of the base code. 

Another problem is the interaction between aspects. It can be difficult to predict the 
effect of multiple aspects advising the same joinpoint. Especially problematic are 
conflicts and implicit dependencies caused by introductions. For this reason, 
introductions are not supported in CaesarJ. For extension of classes with new state 
CaesarJ provides a mechanism of wrappers, which are defined locally inside aspects 
and therefore cannot lead to conflicts and implicit dependencies. 

V1.2 7/30/2007 AMPLE WP3 D3.1 27 of 67 
 



© 2007 by the AMPLE consortium  Public 

Modularity of aspects can be improved using a pattern called Crosscutting Interfaces 
[54], which uses a set of static pointcuts to define a boundary between the base 
functionality and the aspects. Open Modules [53] propose dedicated language features 
to control aspect visibility. 

The runtime overhead of aspects without the dynamic features, dynamic activation or 
usage of dynamic conditions in pointcuts, is negligible. An efficient implementation 
of some of the dynamic features is possible in dedicated virtual machines, such as 
Steamloom [50].  Since aspects have global effect, support for incremental weaving is 
problematic. Compilation time is also a difficult issue in aspect-oriented languages, 
based on static weaving [52]. 

3.5 Feature-Oriented Programming 
A feature can be seen as a logically cohesive piece of functionality, which normally 
corresponds to a set of related requirements in a functional specification of a program. 
Thus, varying (optional, alternative, etc.) requirements can be represented by varying 
(optional, alternative, etc.) features.  

The goal of feature-oriented programming (FOP) is to modularize programs into 
features. Since features are present in most stages of software development, such 
modularization has various advantages, but in this document we will consider only the 
advantages related to variability management. 

Variability in FOP is achieved by decomposing a program into pieces of code that 
implement different features and then by generating different variations of the 
program for different selections of features. The reusable assets in this case are the 
modules implementing individual features, the variants describe selection of features, 
and the binding are compositions of the modules implementing the selected features. 

A class can implement multiple requirements that belong to multiple features. On the 
other hand, the implementation of a feature can require multiple classes. Thus the 
modules in FOP are collections of partial class implementations.  In the following, we 
will evaluate different approaches that support such modularization.  

FOP is implemented in GenVoca [12] and AHEAD [11], which provide tools for 
composition of so-called mixin layers consisting of partial definitions of classes. The 
transformation type of the mechanism is composition based on merging at the 
granularity level of methods. However, slices of the implementation of a method can 
also be distributed into multiple layers and combined using the semantics of super 
calls. The name clashes that occur during merging are resolved by the order in which 
the layers are composed, i.e. the methods of a layer can override the corresponding 
methods of the layers that are further according to the order of composition. In this 
way more specific features can override the functionality of more general features. 

The composition takes place at compile time, and the result of each composition is a 
separate program. The approach requires very little infrastructural code and does not 
introduce any overhead on runtime performance. 

The main problems with AHEAD are related with its weak support for validation and 
modularity. The separation of feature modules is at structural level, which means that 
the dependencies between feature modules are not declared. This makes it impossible 
to validate them in a modular way and to support their incremental compilation. 

These problems are alleviated in other approaches that support similar layered 
decomposition.  
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Definitions of classes can also be distributed in multiple modules in Open Classes, 
implemented in MultiJava [34].  This achieves separation of features at the level of 
explicit dependencies, and provides their modular checking and incremental 
compilation. However, modular checking in Open Classes is achieved at the cost of 
flexibility of separation: an implementation of a method must be located in the 
module of its class or in the module where the method was introduced. Besides, Open 
Classes do not support the composition and overriding semantics of method 
implementations available in mixin layers. 

Layered decomposition is also possible in languages supporting virtual classes and 
deep mixin composition, e.g. gbeta [30], CaesarJ [29] and J& [55]. The composition 
semantics of these approaches also support overriding and composition of method 
implementations. The abstract virtual classes of CaesarJ enable definition of 
interfaces for feature modules. In this way it is possible to separate the 
implementations of different features at the level of segregated interfaces. Besides, 
virtual classes support coexistence of multiple different combinations of feature 
modules within the same program and their dynamic instantiation.  

3.6 Conditional Compilation 
Conditional compilation is a simple and widely used variability mechanism in 
languages such as Ada, C and C++.  Variant, optional, and alternative code segments 
are marked using pre-processor directives.  In the example shown in Figure 7, 
platform specific code is marked using a series of #ifdef statements.  Defining a 
token WINDOWS, by using #define WINDOWS, will then allow the pre-processor to 
include code segments that delineate the windows specific code. 

 

Macintosh specific code… 

#endif 

 
#ifdef UNIX 

Unix specific code 

#endif 

//Non platform specific code… 

//… 

#ifdef WINDOWS 

Windows specific code… 

#endif 

 
#ifdef MACINTOSH 

 
 

Figure 7. Conditional compilation 

 
Conditional compilation is an easy way to configure software by allowing fragments 
of program code to be included or omitted from the final code, depending on whether 
a symbol has been defined or not.  In the C and C++ languages, in addition to the 
#ifdef command there are also #ifndef (if token not defined) #undef (undefine 
the token) and #else (alternative code) directives among others.   
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Pre-processor directives were not seen as important for the Java programming 
language, mainly due to its platform independence and ability to do a simple form of 
conditional compilation by surrounding variant code segments in a test (Figure 8). 
Therefore, if the compiler can prove the code will never get executed it removes it, 
although this is rather simplistic and inflexible for anything but small-scale problems.  

 

 

private static final boolean DEBUG = false; 

 
…code 

 
if(DEBUG){ 
…debugging code (included if DEBUG set to true) 
} 

Figure 8. Conditional compilation in Java 

 
Conditional compilation is usually used in combination with build scripts, which 
define the process to build various configurations of a program. The variation is 
achieved by controlling the set of the files to be compiled and by specifying the 
values of the variables used by the pre-processor. There can be multiple build scripts 
for building different configurations of a program or a single script parameterized by 
corresponding configuration variables.  

Conditional compilation implements parametric variation. The reusable assets are the 
source files and variants are expressed by values of the configuration variables. These 
variables are not typed and can take primitive values, usually Boolean flags and 
numbers. The variation is bound at compile time.  

The biggest problem with such a variation approach is modularity, because the parts 
of code depending on different variants are not separated from each other, which also 
often leads to complicated, obfuscated code. 

The supported variation is usually described informally in form of comments of 
configuration variables. Validation of the variables is usually implemented by explicit 
checks in the build scripts. However, the biggest problem is validation of the reusable 
assets. Validation takes place only during the build, which means that validation is 
performed only for specific variants; therefore, a change for one configuration can 
lead to inconsistencies in other configurations. 

Incremental compilation is supported in the context of fixed configuration. Changing 
a value of a configuration variable usually requires complete rebuilding. 

3.7 Code Generation 
Code generation [10] is an increasingly popular generative technique that produces 
code from a higher abstraction. In the past, the term code generation was used to 
describe the process of turning source code into assembly code, although modern 
usage typically means the production of the programming code itself. Examples of 
code generation in the modern sense include GUI builders, domain-specific 
languages, macros, template languages and so forth. Code generators encapsulate the 
complexity and finer details of program code, allowing developers and system 
configurators to concentrate on domain-specific configuration details. 

A prime example of the strength of code generation is in the elimination of the 
redundant complexity that pervades the J2EE platform. A large database application 
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that utilizes Enterprise Java Beans (EJB) typically requires two interfaces per table. 
Additionally, each table may also require multiple classes to handle the mappings 
between the different tables. In a database system that has hundreds of tables this can 
result in literally thousands of files, with many of these files sharing a great deal of 
‘boilerplate’ code commonality with one another. By using a code generator and 
suitable templates, it is possible to automate the creation of these files. Moreover, 
changes to a schema are propagated throughout the code, and the templates are 
reusable for other database applications. In contrast, if the application were entirely 
hand coded from scratch the chances of anything being reused would be opportunistic 
at best. 

The input for code generation is usually a model that describes some higher-order 
abstraction of the system. The models are expressed in domain-specific languages 
(DSL) that can have a textual as well as a graphical concrete syntax. This approach of 
building software systems is known as model-driven development (MDD) [7]. MDD 
technology consists of a variety of tools for different purposes: defining and 
implementing DSLs, building model editors, validation of models, defining model to 
model transformations, and code generation, which is also known as model to code 
transformation. An extensive overview of the MDD techniques is given in our survey 
of the state of the art in product line architecture design [1]. In the following we will 
only evaluate code generation techniques by the criteria of Section 2.1. 

The reusable asset in the code generation is the generator itself, i.e. its implementation 
and all artefacts that it uses for generation. The input models are the variants, and 
their meta-model describes the variation type. 

The expressivity of the transformation depends on the expressivity of the language 
used to implement the generator. Using brute force generation, generators are 
implemented in a general purpose programming language (GPL). Often the generator 
language is the same as the language of the generated code. Another approach is to 
use specific DSLs for generation. The advantages of DSLs for code generation are in 
fact the same as the advantages of DSLs over GPLs in general:  

• By providing specifically designed constructs, DSLs can express generators 
more concisely, reduce the implementation complexity and the amount of 
infrastructural code 

• By constraining expressivity, DSLs protect developers from wrong design 
decisions. In GPL developers must work out suitable idioms and rules and 
follow them in a disciplined way. Besides, there is a danger that someone who 
does not know these rules will break the design assumptions. 

Typical DSLs for building generators are various template languages, such as XSLT 
[58], XPand of openArchitectureWare [26], XVCL [56] and ANGIE [57]. The 
generators are implemented by a set of templates. Templates mix pieces of code to be 
generated with template instructions that control generation. The languages provide 
constructs for parameterization of the source code, conditional generation, code 
repetitions, navigation over the input model, and search in the model.  
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An advantage of template-based generation is that it minimizes the optical difference 
between the generator and the generated code, and thus it makes it easier to 
understand the output of generation. The distance between the generator and its output 
is especially big in API-based generation, which makes such generators very difficult 
to understand. 

Template languages, like brute force generation, are not bound to a specific target 
language.  An obvious advantage is that they can be used for generation of code in 
different languages and even for non-code artefacts. The disadvantage is that such 
generalization makes it impossible to provide any validation of the pieces of target 
code contained by the templates. Therefore, only the instructions of the template can 
be validated, which, of course, is not sufficient to guarantee any properties concerning 
consistency of the generated code. Lack of modular validation is not so critical in 
template-based generation, because generation takes place at compile time, thus, the 
generated code can be validated at compile time by some compiler of the target 
language. 

A better support for validation is available in language-specific template-based 
generation approaches, such as template meta-programming in C++ [5][59] or in 
Haskell [60]. These approaches check the syntactic correctness of the templates. They 
are however not specifically designed for code generation from models and, thus have 
similar problems as brute force generation with GPLs.  

Syntactic checking is also an advantage of API-based generation, because the 
generators work at the level of the abstract syntax trees. They are suitable for 
complicated transformations, especially when no larger solid pieces of generated code 
can be identified. In other cases the generators implemented in this way are much 
larger and complicated than their template-based counterparts.  

Complete type checking of code generators is difficult and possible only by 
constraining their expressivity. Type-safe solutions are proposed for conditional 
variation of method declarations in a class [61] and iteration over methods of a class 
to generate methods of another class [62]. These solutions are very new and cover 
only very special cases of code generation.  

3.8 Interpreters 
In a previous chapter, we mentioned that variation can be expressed by models of 
various DSLs, which are then transformed to code of a conventional programming 
language using code generation. Another approach to implement a DSL is to write an 
interpreter for it in some programming language. In such a scenario, the interpreter is 
the reusable asset and variation is bound at runtime by calling the interpreter with 
some program.  

The advantages and disadvantages of using interpreters instead of code generation are 
discussed in [7]. It is argued that it is common to use code generation to express static 
aspects of a system, while interpreters are suited when the DSL expresses behaviour. 
In fact, if there no dynamic behaviour related with a DSL, there is nothing to interpret. 
Thus, it makes sense only to compare interpreters or code generation with respect to 
implementation of DSLs with dynamic behaviour. 

The major advantage of interpreters is that they provide variation at runtime. 
However, in the languages supporting dynamic loading, such as Java, it is possible to 
use code generated at runtime. Explicit execution of DSLs in interpreters can be 
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advantageous for traceability, because there is a direct link between the execution 
state and the executed program. 

The major argument against using interpreters is loss of performance. The generated 
code can be compiled, optimized, and executed directly by the processor, while an 
interpreter executes the program as a virtual machine, which itself is executed by the 
physical machine. This additional level of indirection usually causes significant drop 
of performance. 

The static nature of code generation can also be an advantage, because the generated 
code can be statically checked by its compiler. The interpreter can only perform static 
checking of DSL code before executing it, but this kind of validation is also possible 
in case of code generation. 

3.9 Configuration Management 
Configuration management (CM) is the process of identifying, defining and recording 
changes to configuration items in a system. CM also reports on the status, 
completeness and correctness of the configuration items and is used for storing 
different versions of a component or software artefact for use in different products. 
Pressman defined CM in [24] as a set of activities designed to control change by 
identifying the work products that are likely to change, establishing relationships 
among them, defining mechanisms for managing different versions of these work 
products, controlling the changes imposed, and auditing and reporting on the changes 
made. It is used in conjunction with a wide variety of the following approaches such 
as object-oriented frameworks and component-based models for example. However, 
while the usage of this approach to variability management is widespread in industry, 
it does not represent the state of art for software product line development. Krueger in 
[6] discusses the problem that traditional configuration management tools have in 
managing “variations in space” (the differences between individual products in the 
domain space at any fixed point in time) as opposed to “variations in time” (tracking 
changes and evolution). That being said, CM should still be used in software product 
line development for versioning of the product line architecture. 

Although configuration management consists of a wide range of activities concerning 
variation, it is often considered to be equal to revision/version control. Instead the 
latter one is a part of CM. There are plenty of tools supporting the management of 
different revisions of source files. Systems like CVS or Subversion are mostly used in 
the open source community; examples for commercial tools are IBM Rational 
ClearCase, Perforce, PVCS or Microsoft SourceSafe. These tools are much more 
focused on management of files than of more abstract concepts like features. These 
tools could be used for feature and variation handling, but such an approach would be 
far away from being efficient. Revision control systems offer the ability of managing 
different versions of a software product on different development streams. These 
streams are called branches. Changes on one branch may be propagated to other 
branches. While there is tool support for merging functionality from one branch into 
another and for dealing with conflicts that may arise, using this functionality for 
product line management may be at hand. But the management of products of a 
product line put on different branches becomes tedious with an increasing number of 
products. While such tools may be used to develop three or four products in parallel, 
the management of a product line consisting of more than 15 or 20 products is almost 
impossible. For being able to handle concepts like features and their relationships 
more tailored tools are necessary. Some are discussed in chapter 4 of this document. 
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As already indicated configuration management does not only contain activities 
regarding the management of changes to source code, it is also related to activities 
like actually building a product. This includes the creation of components, handling 
conflicts and assembling a product out of these components. It is easy to draw a 
connecting line to feature modelling in SPLs, which may be used as a fundament, 
when applying configuration management systems in SPL engineering. 

3.10  Conclusion: Elements of Variation Mechanisms 
In spite of the diversity of variation mechanisms that were evaluated in this chapter 
we can identify several reoccurring techniques that form the basis of these 
mechanisms: 

• Parameterization. A large part of variation mechanisms implement some 
form of parameterization. In parametric variation reusable assets expose a set 
of explicit parameters that can be bound to different values. Parametric 
mechanisms differ by the object of parameterization, the type of parameters, 
the way the parameters can be used and the binding time. Conventional object-
oriented languages provide parameterization by objects at runtime at the scope 
of methods, objects and programs. Frameworks and various design patterns, 
e.g. Strategy, State, Decorator, specialize primitive parametric mechanisms of 
object-oriented languages for specific problems and scenarios. The 
conventional mechanisms of programming languages do not support static 
parameterization. This hole is filled by more specific language features, such 
as generics or C++ templates that enable static parameterization of classes, 
and pre-compilation techniques, such as conditional compilation and template-
based generation, that enable static parameterization at the scope of modules 
and other artefacts. 

The general characteristic of parametric variation is its high expressive power, 
because variation is expressed as computation with the variant as input. 
Another advantage of parametric variation is that variants are independent 
from reusable assets. However, the cost for this is usually a strong dependency 
of reusable assets on variants, which makes it difficult to extend the system 
with new variants. Because of weak support for extensibility, the reusable 
assets must be specially prepared to support required variations, which means 
that parametric variations are best suited for anticipated variation. Another 
observation is that there is a trade-off between the high expressivity of a 
parametric mechanism and the static validation of its possible results. For 
example, in the template-based generation it is even not possible to determine 
if a template will always produce syntactically correct code. An opposite 
example is generics, which supports complete type checking of parameterized 
classes, but the generic parameters can be used only in very strict way.   

• Dispatch. Parametric mechanisms are often supplied with some form of 
dispatch on the parameter values. The most well known example is dispatch of 
method implementation by the type of receiver in object-oriented languages, 
also known as late binding. Other interesting examples of dispatch are partial 
template instantiation in C++ and dispatch of templates in XPand. 

Dispatch improves modularity of parametric mechanisms, because it reduces 
dependency of reusable assets on specific variants. The pieces of code that 
depend on different variants can be isolated from each other. In this way 
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stability and extensibility of the system is increased, because new variants can 
be introduced without changing existing code.  

• Refinement. Refinement is an alternative to parameterization: instead of 
specifying variation by explicit parameters, we open the structure of reusable 
assets for extension and overriding.  The refinement mechanisms that were 
discussed in this chapter differ by their scope: class inheritance enables 
refinement with class scope, while AOP and FOP define refinements with 
program scope. Refinement with collaboration scope is possible with virtual 
classes. 

The major advantage of refinement lies in its support for unanticipated 
variation, because variation is enabled implicitly by leaving the structure of 
reusable assets open for extension. Another advantage is that a reusable asset 
is completely independent from its variations. However, this independency is 
usually achieved at the cost of a strong dependency in the opposite direction. 
The strong dependency of extensions on the code they extend is the major 
problem of refinement mechanisms. Support for independent extensions is 
also problematic, because the extensions are not aware of each other and can 
interact in unpredictable ways. Examples of this problem are: the aspect 
interaction problem and the problem with name clashes in multiple 
inheritance.  

• Quantification. The major innovation of aspect-oriented languages is 
possibility of quantification over the points of extension. Quantification 
improves expressivity of refinement mechanisms, because crosscutting 
extensions can be expressed in a concise way. Quantification can also improve 
stability of extensions, because instead of explicitly enumerating extension 
points we refer to them by their properties.   

• Composition. Variations are often expressed as different combinations of a 
predefined set of reusable assets. Technically, compositional variability can be 
achieved using the same parameterization and refinement mechanisms: in the 
first case we compose a reusable asset with a parameter value, while in the 
second case we compose a reusable asset with its extension. The main 
difference is that in case of compositional variability we treat the parameter 
values and extensions as reusable assets.  

Compositional variation is often an alternative to implementation of 
configuration using simple parametric variation, e.g. conditional compilation 
or conditions on global variables. The advantage of compositional variation is 
better modularization of variant dependent code: each component contains the 
code that depends on the selection of that component in the variant. Besides, 
we can extend the system with new components. Other properties of 
compositional mechanisms are very different and rely on the properties of 
underlying parametric and refinement mechanisms.  

We can see that different variation techniques have different advantages and 
disadvantages, and what variation mechanism we choose depends on our 
requirements to variability support. In order to cover a broader spectrum of variability 
requirements, we must either alleviate the disadvantages of individual variation 
mechanisms or to develop a coherent implementation technology that integrates 
multiple variation mechanisms.  
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Programming languages are such coherent technologies that integrate multiple 
variation mechanisms, but they are still far from covering the complete spectrum of 
variability requirements.  Mainstream programming languages such as C++ and Java 
lack variation mechanisms with a scope larger than classes. With the exception of 
C++ templates there is almost no dedicated support for static variation.  

The need for large-scale refinement mechanisms is addressed by feature-oriented and 
aspect-oriented programming. Large-scale parametric mechanisms are provided by 
template-based languages, but differently from aspect-oriented mechanisms, 
templates are not integrated in the programming languages: what makes it impossible 
to validate them in a modular way.   

A lot of variation mechanisms are available only at compile time or only at runtime. 
This means that if we decided to switch to change binding time, we have to 
reimplement our assets with different mechanisms. An interesting research direction 
would be to make certain static variation mechanisms available at runtime, or the 
other way around. 

It was mentioned that dispatch improves modularity and extensibility of parametric 
variation mechanisms. We can observe, however, that the mainstream parametric 
mechanisms have weak or no support for dispatch. More sophisticated forms of 
dispatch such as multi-dispatch or predicate dispatch [63] are available only in 
research languages and are not used in practice.  

4. Evaluation of Existing Tools 
In this chapter we evaluate four different tools with respect to the criteria introduced 
in Section 2.2. We consider here only the tools that cover a range of activities of the 
development of SPLs. The following three tools fit this requirement, provide typical 
development environments for SPLs, and are among the most feature-rich tools: 

1. pure::variants from pure-systems™, a German software development company; 

2. Gears from BigLever Software, Inc.™, a US software provider; 

3. fmp2rsm, a SPL tool developed by Prof. Czarnecki and his group. 

Furthermore, we evaluate a representative tool suite for general-purpose modelling 
and DSL engineering: 

4. openArchitectureWare, an OSS effort. 

This set of tools seems particularly useful for evaluation in the context of the AMPLE 
project, in which new approaches to tooling for SPLs are to be developed but for 
which integration with mainstream approaches is also of importance. 

In the section, the main characteristics of the three tools listed above are presented. 
The tool evaluations are structured according to the top-level categorization of the set 
of criteria defined in section 2.2. 

4.1 pure::variants 
Pure::variants [3] is a commercial tool with a free entry-level edition that provides the 
currently most complete support for SPL development over the software lifecycle. 

Concepts. pure::variants provides explicit representations for sets of variants of 
components (as part of its “family models”) and features. Family models are built 
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from concrete assets (typically files), declare relationships between them (e.g. arity 
relationships), and make it possible to associate existing implementations to 
components. Feature models may be hierarchical. Relationships between components 
and features can be defined using logic-based constraints or in terms of a table-based 
representation. Variant description models are defined to represent a set of models for 
configuration and transformation. Each different variant product has an associated 
variation description model. Transformations occur by replacing fragments of file that 
represent assets. A validation is done by automatically checking the selection of 
desired features for the variant product.  

pure::variants is agnostic to the concrete implementation technology used for assets (a 
property that is shared by, e.g., the Gears tool that is described below). Nevertheless, 
it comes equipped with several extensions that integrate with different industrially 
relevant implementation frameworks, e.g., SAP's ERP systems as well as the DOORS 
requirement support system. 

Functionality. pure::variants directly supports three different phases of the software 
lifecycle: (i) feature definition and asset-feature mapping, (ii) configuration of an SPL 
and (iii) assembly of a product by selecting features and corresponding components 
from an SPL. It provides limited support for requirement and configuration 
management. However, pure::variants does not provide direct support for other tasks, 
such as requirements and architecture analysis, asset development and the execution 
of products. Some of these tasks are supported by interfaces to third-party tools (e.g., 
requirements analysis with DOORS, simulation with Simulink). SPL models based on 
other information (e.g., stemming from an architecture analysis), variant models as 
well as feature models may be transformed using a specially-tailored XLST 
framework. 

pure::variants is agnostic to concrete implementation languages and underlying 
implementation technologies in the sense that these are either provided through 
suitable import and export plugins or can be supported by specially-tailored plugins.  

pure::variants in itself is not specialized to any application domain. However, specific 
integration modules exist for some industrially relevant domains, such as SAP's ERP 
software.  

The tool provides user interfaces with graphical representation of the models and 
ways to define and modify these models. Specific interfaces are also used for the 
definition of all provided models, definition of features characteristics, model 
dependencies, and transformation management. 

Usage. pure::variants is available in different commercial versions and a free 
community edition, the latter lacking some extensibility features and being restricted 
to small feature models. 

Extension of this tool is explicitly supported through the Eclipse [8] extension 
framework. Furthermore, XSLT transformations can be used to extend the provided 
family and feature models and new features can also be implemented through SOAP 
and COM/OLE interfaces.  

Pure::variants supports interoperability with other tools by several predefined or user-
defined export mechanisms for feature and family models. Source code of assets can 
be used to import code artefacts natively for a small set of languages and can be 
handled using plugins otherwise. 
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Usability of the development environment is enhanced by supporting (the 
manipulation of) textual as well as graphical representations of key abstractions. 

4.2 Gears 
Gears [2] is a commercial tool based on a graphical user interface or command-line 
user interface. It allows the definition of variation points and features, and the 
definition of concrete products through selection of variants and assembly of the 
corresponding products. 

Concepts. An asset in Gears is a group of various forms of files related to source 
code, test- and maintenance-related data. Gears provides a notion of variation points 
that represent parts of software assets that can be configured according to features. 

Gears also provides a special purpose language for defining how different features 
may modify an asset: this language basically makes it possible to test for feature 
values and select concrete assets accordingly. First, an abstract file of an asset can be 
created by selecting a concrete file. Second, the text of the concrete file can be 
customized by text substitution using text patterns defined in a pattern file. Features 
are defined using a textual special purpose language that makes it possible to 
hierarchically define sets of simultaneously applicable or mutually exclusive options. 

Composition within products is supported by three different mechanisms: a module 
abstraction for grouping software assets, a mixin-like abstraction to support 
crosscutting definitions over modules and a composition matrix. Nesting of product 
lines is also supported. 

Functionality. Like pure::variants, Gears supports three different phases of the 
software lifecycle: (i) feature definition and asset-feature mapping, (ii) configuration 
of an SPL and (iii) assembly of a SPL. However, it does not provide direct support for 
other tasks, such as requirement and architecture analysis, asset development and the 
execution of SPLs. 

Gears is agnostic to other methodologies and technologies used to support SPL that 
are not directly related to feature management. Software artefacts generated by, e.g., 
tools for software design, can be used as assets within Gears and assets may be 
implemented according to different, e.g., industrial, component standards. In contrast 
to pure::variants, Gears does not provide specific interfaces for existing 
infrastructures but relies on direct manipulation of compatible software assets. 

Finally, Gears is not targeted at particular application domains. 

Usage.  Gears is licensed on a per-user basis and only different evaluation versions 
are freely available on request. The underlying development environment does not 
provide an explicit support for extension or configuration. All main concepts of the 
tool - such as variation points, features and composition abstractions – are easily 
manipulable in a textual and graphical way. 

4.3 fmp2rsm 
fmp2rsm is an implementation of Feature-Based Model Templates for IBM Rational 
Software Modeler (RSM) [67] and IBM Rational Software Architect (RSA) [68], 
which are UML modelling tools. fmp2rsm integrates the Feature Modeling Plug-in 
(fmp) [69][70] with RSM and enables product line modelling in UML and automatic 
product derivation. The fmp is an Eclipse plug-in for editing and configuring feature 
models.  
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Concepts. As presented in [71], fmp2rsm provides explicit representations for sets of 
family models. A family model is represented by a feature model and a model 
template. The feature model defines features with constraints on the possible 
configurations. The model template contains the union of the elements in all valid 
template instances. The set of the template instances corresponds to the scope of the 
model family. The elements of a model template may be annotated using presence 
conditions (PCs) and meta-expressions (MEs). These annotations are defined in terms 
of features and feature attributes from the feature model, and can be evaluated with 
respect to a feature configuration. A PC attached to a model element indicates 
whether the element should be included in or removed from a template instance. MEs 
are used to compute attributes of model elements, such as the name of an element or 
the return type of an operation. An instance of a model family can be specified by 
creating a feature configuration based on the feature model. Based on the feature 
configuration, the model template is instantiated automatically. The instantiation 
process is a model-to-model transformation with both the input and output expressed 
in the target notation. It involves evaluating the PCs and MEs with respect to the 
feature configuration, removing model elements whose PCs evaluate to false and, 
possibly, additional processing such as simplification.  

Functionality. fmp2rsm  supports three different phases of the software lifecycle: (i) 
feature definition and RSM/RSA-feature mapping, (ii) configuration of an SPL and 
(iii) generation of template-instance (models) of a product line member by selecting 
features. fmp2rsm follows a model driven development (MDD) strategy relying on 
model-to-model transformations and does not provide model-to-text facilities. For 
this, the use of specialized tools such as MofScript [72] or Acceleo [73] is suggested. 
fmp2rsm provides limited support for requirement and configuration management. 
Based on fmp, fmp2rsm provides an automated verification procedure for ensuring 
that no ill-structured template instances are generated from a correct configuration. It 
also provides functionality for creating staged configuration of product line members, 
useful, for example, for sharing the responsibility of configuring products between 
different users/roles, and extends the traditional semantics of feature models allowing 
the creation of clonable features, or feature nodes with typed attributes. As 
pure::variants, fmp2rsm does not provide direct support for other tasks, such as 
requirements and architecture analysis, asset development and the execution of 
products. Some of these tasks are supported by RSM/RSA. fmp2rsm is not 
specialized to any application domain.  

Usage. fmp2rsm is freely available through its homepage (see [74]). However, it 
works on the platform of IBM Rational Software Modeler or IBM Rational Software 
Architect, which are commercial tools. RSM/RSA 30-day trial versions can be 
accessed from [75]. Extension of fmp2rsm is supported through the Eclipse-plugin 
mechanism.   

4.4 Modelling tools for SPL: the example openArchitectureWare 
openArchitectureWare (oAW) is a free tool for model-driven development, that 
provides complete support for the design of Domain Specific Languages (DSLs) [26]. 
It does not explicitly support the design and implementation of SPLs by means of 
dedicated representations.  

Concepts. oAW supports the implicit management of variability using model 
transformation techniques. Domain meta-models define domain concepts and possible 
variations are represented using a tool for defining DSLs (using a formalism based on 
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BNF-style grammars) together with additional semantic constraints. The description 
of a variant product is made by writing DSL code. The validity of variant products 
can be checked using language parsing and model validation techniques. A model 
transformation chain is used for the generation of source code for products; assets are 
also defined and manipulated using meta-models, transformation rules, and generation 
templates. Model transformation supports the use of Aspect-Oriented Software 
Development techniques. Transformations can take as input many models (instances 
of one or more meta-models that themselves can be instances of different meta-meta-
models) and can define the way models are woven in order to produce one or more 
models. From a code generation perspective, some templates can be used to customize 
other existing templates without having to modify them, thus making it possible to 
manage separation of concerns and unanticipated variants. These facilities can be 
harnessed as part of a configurable workflow: the workflow itself can be split into 
parameterized components, enabling variability of the product design and generation 
process itself.  

Functionality. oAW provides a set of specific languages to support the entire design 
process of a DSL [26]: a first phase consists in domain meta-modelling, a second 
phase consists in defining the grammar of the DSL language. To this end, a dedicated 
language with a simple BNF-like syntax named Xtext, is provided. Xtext descriptions 
are used by oAW to produce syntactic analysers and a corresponding meta-model. A 
third step consists in the definition of transformation rules between meta-models (and 
particularly between the domain and the syntax meta-model). The Xtend language is 
provided to define transformation rules: it allows weaving different models, instances 
of different meta-models, and supports aspect oriented model transformations. As part 
of a fourth step, constraints can be defined to validate models. A language, named 
Check is used to describe model validation rules and error messages. Finally, the fifth 
and last phase consists in defining templates for source code generation. A template 
language named Xpand, is provided to this end (cf. Section 3.8). All of this process 
(parsing, checking, transforming and code generating) is supported by the oAW 
workflow engine and configured with specific workflow configuration files, thus 
providing large flexibility.  

This process does not necessary include the use of all languages and other tools. 
Complementary facilities of the ECLIPSE modelling world can be used instead or in 
addition. oAW is agnostic to concrete implementation languages and underlying 
implementation technologies in the sense that any type of source code can be 
generated by the transformation chain. It is also not specialized to any application 
domain. 

Usage. oAW is a freely available ECLIPSE plug-in [26], deeply integrated with the 
well known plug-in EMF [9]. oAW supports, with import and exports facilities, the 
use of many ECLIPSE standard formats (and particularly ECore) during the DSL 
design process, making its usage rather well interoperable with the rest of the Eclipse 
modelling world (GMF, UML2, OCL, etc.). 

Furthermore, the oAW workflow is highly configurable: many kinds of existing 
technologies can be used instead of oAW languages for defining meta-models (even 
some non-Eclipse ones), transformations rules (e.g. ATL), constraints (e.g. OCL) and 
templates (e.g. JET). Extension of this tool is explicitly supported through the Eclipse 
extension framework. 
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4.5 Evaluation 
The evaluation of the four tools given in the previous section gives rise to different 
major issues that are relevant for the endeavour of integrating new support for SPL 
with existing tooling as well as underlying software development methodologies and 
implementation technologies: 

• All evaluated tools only cover directly the phases of variant and feature 
definition as well as product composition by feature selection. There is, 
however, almost no explicit support for the testing, execution and maintenance 
of SPLs. 

• Existing tools offer almost no means for some key features relevant to SPL 
development. Traceability over the software lifecycle, for instance, is covered 
only rudimentarily by the existing tools. The tools do not allow, for instance, 
tracing information during execution within parts of a module that constitutes 
one asset on the level of the variant and feature models. However, this 
information can very well be relevant to improve the feature model of the 
underlying product, especially during evolution of the product. In addition, the 
evaluated tools lack of orthogonal mechanisms for managing the whole SPL 
development activities such as requirements management or configuration 
management and the respective versions control. 

• Even when some tools use different kinds of models as core assets for 
composing entire SPL members, there is limited integration of the model 
driven development principles, related with the development of domain-
specific model languages or the definition of reusable model transformation 
rules, that would allow composing or refining models until the final SPL 
members are obtained. 

• Integration with existing tool development environments, such as Eclipse, is 
advantageous compared to a standalone tool, in particular, for achieving 
extensible and interoperable tool support for SPLs. Tool development 
environments support these criteria in two ways; first, directly through 
extension mechanisms (such as the Eclipse extension mechanism or plugin 
mechanisms) that can be leveraged for SPL development; second, indirectly 
through better interoperability with already existing tools that are relevant to 
SPL development. 

• DSLs and feature models are complementary approaches for the engineering 
of large scale SPLs. Feature modelling is well suited for configuring the main 
features of a line of products. When considering in detail some complex 
and/or highly configurable parts of a product, the use of a DSL can be very 
useful. For example, if some parts of a product require specific behaviour it is 
generally more intuitive, easy and powerful to express this behaviour with a 
DSL. The DSL approach is generally well-suited for engineering SPLs "in the 
small". No tool currently exploits the respective qualities of both approaches. 
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Tabular comparison 
 

Table 1. Tabular comparison of the tools at the conceptual level 

 pure::variants Gears fmp2rsm oAW 

Variation 
mechanism 

 File realization  Text Substitution   

Variation 
management 
principle 

a piece of text is 
replaced by 
a substitution text 

an abstract file 
(directory) 
is realized by a 
concrete file 
(directory) 

a piece of text is 
replaced by 
a substitution text 

A model-template 
instance is created 
from a model-template 
and a feature 
configuration 

source code is 
generated from DSL 
code via a model 
transformation chain 
 

Reusable Assets files (code, 
documentation) 

 any kind of asset 
implemented 
using files (directories) 

any kind of asset 
implemented 
using text files 

models meta-models, 
transformations rules, 
generation templates 
 

Variation Type parts of files  an abstract file 
(directory) 

piece of text in an asset 
that 
matches one of the 
patterns 
defined in a pattern file 

Multiple stereotypes in 
models, cardinality, 
and model elements 

defined by DSL 
syntactic and semantic 
rules, instantiation of 
meta-models and 
templates parameters 

Variants fragment of text (code, 
documentation) 

concrete files 
(directory) 

the different 
substitution 
texts defined for the 
matched text in a 
pattern file 

Concrete stereotypes 
and cardinality, and 
concrete model 
elements 

DSL code, models, 
source code 

Expressive Power      
Transformation 
Type 

replacement file (directory) 
realization 

text substitution using 
pattern 
matching 

Composition/ Merging model transformation, 
(AO) code generation 

Granularity fragment of files files  characters Fragments of models fragment of meta-
models, fragment of 
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templates 
Binding Model     
Binding Time assembly assembly assembly assembly 
Availability Time before binding before binding before binding before binding 
Scope of Binding file file models Meta-model, 

transformation rules, 
templates 

Validation      
Availability of 
variation type 

explicitly specified explicitly defined as a 
file 
(directory) 

explicitly defined as 
files 

explicitly specified explicitly specified as a 
DSL BNF and meta-
models 

Validation of 
binding 

possible possible, there are 
constraints 
in the feature selection 
that assure that a 
selection 
can result in a valid 
product 

possible, there are 
constraints 
in the feature selection 
that assure that a 
selection 
can result in a valid 
product 

possible  Possible via DSL 
syntactic analyzers and 
model constraints 
checking 

Modularity      
Structural 
Separation 

not clear There is the notion of module, which define the 
scope of feature declarations 

not clear. Features can 
be grouped and after 
referred by other 
features. Model 
templates are managed 
separately. 

No explicit description 
of features. Meta-
models and templates 
can express different 
concerns 

Explicit 
dependencies 

it is possible to declare 
restrictions and 
constraints that refer to 
features 

modules can depend on mixin modules. The 
dependencies are implicit in the context of a 
module, but they become explicit in the 
definition of a concrete product 

It is possible to define 
dependencies between 
features, between 
model templates, and 
between feature and 
models templates 

dependencies between 
meta-models are 
explicit in 
transformation rules. 
Explicit dependencies 
between templates and 
meta-models. 

Segregated variation description using the concept of a matrix, different products It is possible using the not relevant 
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interfaces models can be instantiated for different clients concept of staged 
feature configurations 
and specializations 

Asset/Variation 
Dependency 

unaware unaware unaware unaware 

Decomposition of 
Assets 

assets in different files assets in different files Assets in different files 
that represent different 
models 

no 

Decomposition of 
Variations 

features model 
hierarchy 

features model hierarchy features and model-
templates hierarchy 

not explicit 
 

 

Table 2. Tabular comparison of the tools at the functional level 

Process coverage     

definition of SPL feature model feature model feature model DSL 

analysis/validation 
of SPL (domain 

space) 

yes, checks 
compatibility between 

feature model and 
family model 

yes, the tool includes a statistics report, which, 
for instance,  computes the number of potential 

products based on the number of  feature 
declarations and definitions 

yes( computing 
number of 

configurations 
represented by a 
feature model, 
propagating 

configuration choices, 
and so on [65]) 

no 

analysis/validation 
of products 

(application space) 

yes, check 
compatibility between 

feature model and 
variation description 

model 

yes, checks that the feature selections of a 
product instance are correct with regard to the 

corresponding feature model and check the 
correct selection of product instances for each 

module and mixin module 

yes (verifying feature-
based model templates 

against well-
formedness OCL 
constraints [66]) 

yes (checking model 
validity against OCL 

constraints) 

product assembly yes yes no yes 

product testing no no no no 

product execution no no 

V1.2 7/30/2007 AMPLE WP3 D3.1 44 of 67 
 

no no 



© 2007 by the AMPLE consortium  Public 

product 
maintenance 

no no no no 

Support for specific 
application domains

no no no no 

Expressiveness of 
feature model 

editors 

    

Hierarchy of 
features 

yes yes yes, including the 
possibility of creating 

cloned features 

not relevant 

Feature selection one-of, more-of, 
optional, mandatory 

one-of, more-of, optional, mandatory one-of, more-of, 
optional, mandatory 

not relevant (not 
explicit in DSL code) 

Feature with values yes yes yes, including typed 
attributes. 

not relevant 

Assertions on 
feature values 

yes yes yes not relevant 

Feature 
Representation 

graphical textual graphical and textual. not relevant 

Multiple feature 
models 

yes yes yes. Including 
constraints between 

them that allow staged 
specialization. 

not relevant (but 
multiple DSL can be 

used) 

Feature-model 
dependencies 

yes yes yes. Including OCL 
constraints. 

not relevant 

Product creation     

Support for 
managing feature-

model instances 

yes yes yes no 
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Support for product 
instantiation 

yes yes no, just model 
instantiation 

yes (generation of 
source code from DSL 

code) 

Execution 
environment 

no no no no 

Editors to manage 
dependencies 

between feature 
models 

yes yes, it is textually possible to manage the 
dependencies on the feature models of mixin 

modules 

yes no 

Code generator yes no no yes 

Implementation 
targets 

technology agnostic, 
specific support for 

C/C++ and Java 

technology agnostic 

 

no technology agnostic 
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5. Existing Implementation Practices Applied at 
Industrial Partners 

This chapter gives an overview about the various implementation techniques used at 
industrial partner sites. 

5.1 SAP 
At SAP various techniques are already applied to implement variability in software 
products. This section gives an overview of technologies currently used in SAP. 

5.1.1 SAP NetWeaver Platform 
SAP NetWeaver is the underlying technology platform of all SAP applications. The 
following figure gives an overview of the SAP NetWeaver solution map: 
User Productivity 
Enablement

Running an 
Enterprise Portal

Enabling User 
Collaboration

Business Task 
Management

Mobilizing 
Business 
Processes

Enterprise 
Knowledge 
Management

Enterprise Search

Data Unification Master-Data Harmonization Master-Data Consolidation Central Master-Data 
Management Enterprise Data Warehousing

Business Information 
Management

Enterprise Reporting, 
Query, and Analysis

Business Planning and 
Analytical Services

Enterprise Data 
Warehousing

Enterprise Knowledge 
Management Enterprise Search

Business Event 
Management Business Activity Monitoring Business Task Management

End-to-End Process 
Integration

Enabling Application-
to-Application 
Processes

Enabling Business-to-
Business Processes

Business Process 
Management

Enabling Platform 
Interoperability

Business Task 
Management

Custom Development Developing, Configuring, and Adapting Applications Enabling Platform Interoperability

Unified Life-Cycle 
Management Software Life-Cycle Management SAP NetWeaver Operations

Application 
Governance and 
Security Management

Authentication and Single Sign-On Integrated User and Access Management

Consolidation Enabling Platform 
Interoperability

SAP NetWeaver
Operations

Master-Data 
Consolidation

Enterprise Knowledge 
Management

Enterprise Data 
Warehousing

ESA Design and 
Deployment Enabling Enterprise Services

 
Figure 9. SAP NetWeaver Solution Map 

Obviously, a whole range of different technologies, frameworks and libraries are 
integrated in this platform. At the bottom there are two different language stacks 

At the bottom there are two different language stacks that are coexisting. SAP 
software may be implemented on top of both of these stacks:  

1. ABAP (Advanced Business Application Programming) [22] was developed 
and extended by SAP as the primary language for writing business 
applications. The ABAP stack will remain the strategic platform for business 
logic running on backend servers, also in the advent of the upcoming 
Enterprise SOA based, component-oriented Business Process Platform. 
Although legacy plain ABAP programs are still supported, new applications 
are almost exclusively written in ABAP Objects, the downward compatible 
Object-Oriented extension of ABAP. ABAP Objects has all major features of 
modern OO languages, except for method overloading. However, the lack of 
this feature can be circumvented by a number of alternative best practices. 
ABAP furthermore has a number of built-in language features like direct 
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access to database tables, which predestine it for implementing data-intensive 
business software. 
In addition ABAP features aspect-oriented characteristics, which are explained 
in section 0 in greater detail. 

2. Java on the other hand is primarily used for most web-based UI/portal 
technologies (on a JEE basis). Java also plays an increasing role for 
implementing service consumption and service composition on top of the 
Business Process Platform. This strategic decision for a wide-spread industry 
standard language enables SAP partners and ISVs to recruit developers from a 
far larger community than in a pure ABAP-based environment. 

 
While ABAP development (programming, debugging, deployment etc.) is supported 
by a set of dedicated development transactions, which are executed on the host server, 
all Java development at SAP is performed using the client-side IDE of NetWeaver 
Developer Studio (NWDS). NWDS is an extension of the popular Eclipse tool 
platform [20], [21], which consists of a large number of SAP-specific plug-ins. Plug-
ins are the primary extension mechanism for addition new features to the Eclipse 
platform. 

Connectivity between distributed components is established via three technologies: 
Remote Function Calls (RFC), the J2EE Connector Architecture (JCA) and the Java 
Message Service (JMS). 

RFC is the standard SAP interface to communicate with SAP backend systems and 
non-SAP systems, where functions can called to the executed on remote systems. 

The JCA is a specification that defines the standard architecture for connecting the 
Enterprise Edition of the Java Platform (J2EE) to heterogeneous Enterprise 
Information Systems (EIS), which may include ERP and database systems. The 
mechanisms that the connector architecture defines are scalable and secure and enable 
integration of the EIS with application servers and enterprise applications. An EIS 
may supply so-called resource adapters, which are used to connect to the EIS. The 
connectors can be plugged into an application server and provide connectivity 
between the EIS, the application server and the enterprise application. When an 
application server supports this connector architecture, it provides seamless 
connectivity to multiple EISs. 

JMS is a set of interfaces and associated semantics that define how a JMS client 
accesses the facilities of an enterprise messaging product. A JMS application is made 
up of a set of application defined messages and a set of clients that exchange them. 
Products that implement JMS do this by supplying a provider that implements the 
JMS interfaces. Messages are asynchronous requests, reports or events that are 
consumed by enterprise applications. 

Enterprise systems need to persist large amounts of data. To achieve this task the 
NetWeaver Platform enables the use of several technologies for establishing 
persistence. 

OpenSQL is the SAP database abstraction layer implemented in ABAP that translates 
abstract SQL statements to native database SQL statements. OpenSQL covers the 
Data Manipulation Language (DML) part of the SQL standard and extends the SQL 
standard by offering options to simplify and accelerate database access. 
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Java Database Connectivity (JDBC) technology provides cross-DBMS connectivity to 
a wide range of SQL databases and access to other tabular data sources, such as 
spreadsheets or flat files. It is supported by the NetWeaver Platform for J2EE 
development. With a JDBC technology-enabled driver it is possible to connect all 
corporate data independent from homogeneous or heterogeneous environments. 

The Java Data Objects (JDO) API is a standard interface-based Java model 
abstraction of persistence. It is supported by the NetWeaver Platform as an alternative 
to JDBC. JDO technology has the advantage to be able to store Java domain model 
instances directly in a database. The process of mapping data to relational databases is 
transparent for a developer. 

For implementing business logic both of the language stacks mentioned above can be 
used. ABAP is tailored to implementing business applications. It allows quick 
development of business applications providing powerful macros to create the actual 
business logic based on SAP backend systems. There is a huge amount of existing 
business objects on which a developer may rely on. 

The Composite Application Framework (CAF) offers a methodology and toolset to 
create and manage composite applications. It leverages information and data from 
existing applications to solutions by composing existing or new services, user 
interface components, and business processes. CAF is based on the Enterprise 
Services Architecture (ESA) and comprises an abstraction layer for services and 
processes as well as design tools and integrates many key capabilities of the 
NetWeaver Platform. 

In the area of user interaction Web Dynpro is the recommended NetWeaver 
programming model. The Web Dynpro model is based on the Model-View-Controller 
(MVC) programming model and allows a clear separation of business logic and 
display logic. The development environment provides powerful graphical tools to 
layout the user interface. 

However, there are other technologies that are supported alongside. Business Server 
Pages (BSP) are a page-based Web programming model with server-side scripting in 
ABAP. BSPs gives complete freedom when designing UIs since any HTML and/or 
JavaScript can be sent to the client. With the HTMLB BSP extension SAP also offers 
a library of predefined UI elements that simplify the creation of BSP pages. The 
pendant are Java Server Pages which enable page-based web programming with 
server-side scripting in Java. In addition there are frameworks on a higher abstraction 
level like for instance Guided Procedures (GP). GP provides tools and a framework 
for modelling and executing user-oriented workflows. It supports business specialists 
in implementing processes and guides casual users through the execution of these 
processes. 

5.1.2 SAP Exchange Infrastructure (XI) 
An important cornerstone of integration technology built into the NW platform is the 
SAP Exchange Infrastructure (XI) [19], an Enterprise Application Integration (EAI) 
solution supporting also message-oriented / event-driven “hub and spoke” [18] style 
business-to-business (B2B) interactions, which loosely couple heterogeneous 
applications. This corresponds to the event-based component interaction introduced in 
section 3.3.6 as a highly modular architecture style with independent structures whose 
variability can be bound very late in software lifecycle. 
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Figure 10. SAP XI Architecture 

 
SAP XI – now being renamed to SAP Process Integration (PI) – runs on the SAP Web 
Application Server (SAP Web AS) component. SAP XI reduces integration and 
maintenance costs of IT systems by providing a common, central repository for 
interfaces. It supports cross-component business process management (BPM) within 
the same solution. And, it offers an integrated tool set to help organizations build their 
own integration scenarios by defining the appropriate messaging interfaces, 
mappings, and routing rules. 

5.1.3 Configuration and extension mechanisms in the ABAP stack 
 
Implementation Guide for R/3 Customizing (IMG) 
In older existing R/3 applications, the Implementation Guide (IMG) allows the 
customization of selected business processes. It lists all necessary and optional actions 
required for implementing a SAP system. Its primary purpose is to allow a user to 
control and document the whole implementation process. It is also used for making 
customer-specific settings in an SAP system. 

The base is the Reference IMG, which contains all IMG activities and relevant 
documentation. It covers all topics of an SAP system, for example, enterprise 
structure, financial accounting, controlling, materials management or production 
planning. The IMG guides the attention of a user on which configuration options exist 
and which need to be used for certain application fields. 

The Implementation Guide is structured hierarchically, its structure follows the 
hierarchy of the application components (i.e. Recruitment is located under Personnel 
Management). The central parts are so-called IMG activities that enable ways to 
customization and perform important system configuration tasks. The implementation 
team accesses the documentation part of the IMG to perform settings in an actual 
project via the IMG. 
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The Enhancement Framework (EF) was designed to overcome older techniques to 
enable users to modify the standard behaviour of an SAP system. The EF tries to 
combine the easy maintainability of standard software with the high flexibility of 
proprietary solutions while avoiding the drawbacks of both (lack of flexibility in 
standard and upgrade issues in customized software). The EF is not a single 
mechanism; instead it is the integration of various techniques for modifying 
development objects. 

In previous releases of the SAP system, there were predefined points at which users 
were able to insert so-called modifications. This procedure was supported by a 
Modification Assistant, which was able to observe user add-ons (up to a certain 
degree). There are several shortcomings that are connected to these modifications: 

1. There is no support for system upgrades; an upgrade may render modifications 
unusable.  

2. It is quite difficult to trace developments made in different parallel system 
back to one central system.  

3. There is a high cost for testing systems with a lot of user modifications. 

The Enhancement Framework has been introduced in SAP NetWeaver 2004s, Release 
7.0, and aims to unify possible types of modifications/enhancements as well as 
organize enhancements as effectively as possible. At the core of the framework there 
is a simple structure consisting of a hook and an element that can be attached to this 
hook. The EF is supported by a dedicated tool, the Enhancement Builder. 

The main function of the EF is the modification, replacement and enhancement of 
repository objects and foreign objects – objects that form the technical basis of an 
SAP system. Control over these objects is provided via the Switch Framework, which 
is explained in more detail in another section below. 

There are three elementary concepts in the Enhancement Framework for 
modifying/enhancing development objects:  

1. Enhancement Options (EO) defined as positions in repository objects, where 
enhancements can be made. Two types of EO exist: explicit options and 
implicit. An explicit option is created when points or sections in source code 
of ABAP programs are explicitly flagged as extensible. These options are 
managed by Enhancement Spots and filled by Enhancement Implementations. 
In contrast to explicit options, implicit options are special points in ABAP 
programs, which can be enhanced. Examples for such special points are the 
end of a program or the beginning of a method. Implicit options can be 
enhanced by source code, additional parameters for the interface of function 
modules or global classes. 

2. Enhancement Spots (ES) are used to manage explicit Enhancement Options 
and carry information about the actual position of possible options. A spot can 
manage more than one option. ES are directly supported by the Enhancement 
Builder which is integrated in the ABAP Workbench. 

3. Enhancement Implementations (EI) are the counterpart for ES. At runtime one 
or more EI can be assigned to a single ES. There are several types EI: Source 
Code Enhancements, Function Module Enhancements and Global Class 
Enhancements. Source Code Enhancements represent the direct insertion of 
source code at predefined locations in ABAP programs. These locations can 

V1.2 7/30/2007 AMPLE WP3 D3.1 51 of 67 
 



© 2007 by the AMPLE consortium  Public 

be defined by implicit and explicit Enhancement Options. Function Module 
Enhancements represent the enhancement of parameter interfaces. For 
example a new optional parameter can be added to the interface of a function 
module. In addition via Global Class Enhancements new attributes can be 
added to repository objects or special pre-/post-methods can be realized, 
which are called directly before/after ABAP methods. 

Obviously, these concepts can be roughly compared to concepts of Aspect-Oriented 
Programming: Enhancement Options resemble Pointcuts, Enhancement Spots map 
to Join Points, and Enhancement Implementations to Advices. An example is shown 
in Figure 11. In this example a simple program is extended by several enhancement 
implementations. Enhancement 1 is inserted at the position marked with 
ENHANCEMENT-POINT and can optionally be overwritten by Enhancement 2. In 
contrast Enhancement 3 is not inserted at some particular point, but replaces a section 
marked with ENHANCEMENT-SECTION. 

 

PROGRAM p1.

WRITE ‘Hello World‘.

ENHANCEMENT-POINT ep1 SPOTS s1.

..

..

..

ENHANCEMENT-SECTION ep2 SPOTS s1.
WRITE ‘ORIGINAL‘.

END-ENHANCEMENT-SECTION.

ENHANCEMENT 1.
WRITE ‘Hello Paris‘.

ENDENHANCEMENT.

ENHANCEMENT 2.
WRITE ‘Hello Berlin‘.

ENDENHANCEMENT.

ENHANCEMENT 3.
WRITE ‘Enhanced‘.

ENDENHANCEMENT.

 

Figure 11. Example for an ABAP code enhancement 

 
Business Add-Ins (BAdI) 
SAP Business Add-Ins (BAdIs) are one of the most important technologies to adapt 
SAP software to specific requirements. BAdIs were introduced in Release 4.6 in order 
to replace function exits. As of Release 7.0 they are part of the enhancement 
framework. They are realized as explicit Enhancement Options (so-called classic 
BAdIs). New BAdIs are directly supported by the ABAP runtime environment 
through dedicated ABAP statements. 

BAdIs are the basis for object plugins that modularize function enhancements in 
ABAP programs. There is an explicit distinction between the definition and the actual 
implementation of BAdIs. The definition of a BAdI contains an interface, a set of 
selection filters and settings for runtime behaviour. The implementation contains a 
class implementing the interface and a condition imposed by the filters. An example 
of a BAdI structure can be seen in Figure 12. In this example a BAdI A may be used 
for tax calculation. The definition of this procedure is made in the Enhancement Spot 
for the BAdI, while the actual calculation logic can be found in Implementation 1 for 
BAdI A. There may be more than one (two in this example) implementations for the 
definition, which can be used mutually exclusive. 
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Enhancement Spot

(for BAdI)

BAdI A

BAdI B

BAdI C

Enhancement Implementation
(for Object-Plugin)

Impl. 1 for BAdI A

Impl. 2 for BAdI B

Enhancement Implementation
(for Object-Plugin)

Impl. 1 for BAdI A

Impl. 2 for BAdI C  

Figure 12. Structure for Business Add-ins 

 
Clearly this mechanism is not related to Aspect-Oriented Programming, rather it 
resembles patterns from Object-Oriented Programming, where certain behaviours are 
defined via interfaces and implemented by a combination of abstract and concrete 
classes. 

 

Switch Framework 
The Switch Framework (SF) allows the control of the visibility of repository objects 
or their components by means of switches. The SF is integrated in the ABAP 
workbench and works closely together with the Enhancement Framework. While the 
Enhancement Framework enables and supports the actual implementation of 
solutions, the SF controls which of those implementations are finally utilized. 

The main purpose of the SF is the simplification of an ABAP-based system landscape 
by adopting one or more industry solutions in a standard system. Solutions are 
delivered with all objects/functions deactivated, only appropriate objects are activated 
on demand. For this reason, the Switch Framework is a modification-free 
enhancement concept. 

The basis of the SF are three main components:  

1. A Business Function Set (BFS) is a set of Business Functions and corresponds 
to an industry solution. Inside a SAP system several BFS may exist, but only 
one may be active at a time.  

2. A Business Function (BF) is a self-contained function from a business 
perspective and consists of a set of switches. A BF is some kind of building 
block for BFS, activating a BF means activating all its switches.  

3. A Switch is the elementary component in this context; it is a repository object 
that is able to control the visibility of other repository objects. This applies to 
single objects like screens or collection of objects like a package. A switch can 
be assigned to several Business Functions and vice versa several switches can 
be assigned to one Business Function. A conflict arises if two switches turn on 
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objects that may not be used together. This situation is resolved by special 
conflict switches and appropriate conflict-resolving enhancement 
implementations. 

The relations between those elements are shown in Figure 13. In this example the 
BFS contains five BF, where the first and the fourth are activated. Both trigger 
appropriate switches, which leads to the application of a certain package and some 
arbitrary component. The whole structure is similar to feature trees, although there is 
only a limited depth of two or three levels, depending on how fine- or coarse-grained 
a feature is defined. 

 
Business Function Set

Business Function

Business Function

Business Function

Business Function

Business Function

Switch

Switch

Switch

Switch

Package

Screen

Arbitrary
Component

…  

Figure 13. Structure of a Business Function Set 

 
The whole configuration of a Business Function Set is stored in so-called Switch 
Business Configurations (SBC). These are data containers with database table entries 
for industry solutions. Such solutions may contain several SBC, which can be 
activated in subsequent systems of the solution. 

There is a differentiation between industry BFS (industry extensions) and generic 
BFS (enterprise extensions). The Switch Framework can activate exactly one industry 
BFS, but several generic BFS. Examples for industry extensions are media, 
telecommunications or oil & gas, as examples for enterprise extensions financial 
services, global trade or human resources may be mentioned. 

 

Table 3. Comparison of mechanisms in the SAP ABAP stack 

 SAP 
Enhancement 

Framework (EF) 

SAP Business 
AddIns (BA) 

SAP Switch 
Framework (SF) 

Concept    
Reusable Assets ABAP Code ABAP Code Business Function 
Variation Type ABAP Code 

Fragments 
Business AddIn Set of Switches 

Transformation Type Refinement Refinement Composition 
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Granularity Fine, on code 
level 

Fine to Coarse, 
similar to 
component level 

Coarse, on 
business logic 
level 

Modularity    
Level of Separation Structural Structural Structural 
Dependency on 
Variation 

Unaware Unaware Unaware 

Binding Model    
Binding Time Runtime Runtime Startup Time 
Availability Time Runtime Runtime Startup Time 
Scope of Binding Program Program Program 
Modularity    
Asset/Variation 
Dependency 

Stable 
Abstraction 

Stable 
Abstraction 

Stable 
Abstraction 

Decomposition of 
Assets 

Possible Possible Impossible 

Decomposition of 
Variations 

Possible Impossible Impossible 

Efficiency    
Runtime Overhead Highly dependent 

on discovery of 
enhancements, 
medium/high 

Highly dependent 
on discovery of 
enhancements, 
medium/high 

Implementation 
dependent, low 

Memory Overhead low low unknown 
Compilation Effort low low low 
Other Criteria    
Complexity low low high 
Infrastructural Code low, marking of 

enhancement 
points 

low, definition of 
enhancement 
spots 

unknown 

Tool Support yes, via 
Enhancement 
Builder 

yes, integrated in 
ABAP 
Workbench 

yes, integrated in 
ABAP 
Workbench 

Tracing Support no no no 
 
The table above compares three SAP techniques by several important criteria defined 
in chapter 2. 

The concepts of the techniques are different, depending on the level of abstraction 
they are used to vary existing functionality. While EF and BA allow variations on a 
code level, SF has got a notion of variation on a higher abstraction level, although this 
technique is also an implementation technique. While the first two allow refinements, 
the SF can be used for compositional variations. For this reason the granularity is 
coarser. 

In terms of modularity all three approaches are looking alike. The concerns are 
structured into separate modules without clear relations between each other. In 
addition the reusable code is unaware of possible variations and will work without 
taking the functionality of potential extensions into account. 
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relies on a database containing the values for switches which are evaluated at startup 
time. In addition the actual variations must be initially present at the same point of 
time, which allows a decoupled development of assets and variations. 

All three approaches feature stable abstractions; unlike in AOP code injections at 
arbitrary positions are not possible. The decomposability is different in each 
technique; both assets and variations may or may not be decomposed. 

Statements about the efficiency of the approaches are relative. Usually the runtime 
overhead in dynamic techniques like EF and BA are higher than in static approaches. 
The runtime overhead for SW is dependent from the actual implementation and also 
depends on the underlying database containing the value of the switches. The same is 
valid for statements about the memory overhead. Compilation effort is in every case 
low. 

All approaches are supported by dedicated tools, but lack tracing support. The 
complexity is connected directly with the abstraction layer of the variations. 

5.1.4 Business Rule Engines 
A key property of SAP customers is that every business is different. Although there 
are many common parts (predefined business content and built in business best 
practice are actually major reasons why customers buy SAP software), most 
companies draw their competitive advantages out of subtle deviations from standard 
business processes. These variations often go beyond simply enabling/disabling 
switches or changing parameter values. Business experts need means for 
“programming in the large”, i.e., wiring state transitions and message-based process 
interactions, and “programming in the small”, i.e., being able to model conditional 
and/or parallel execution of business process steps, ideally supported by graphical 
tools.  

The Business Process Execution Language (BPEL) [23] was standardized by the 
OASIS group for exactly that purpose. It interacts with external Web Services to 
orchestrate higher-level business processes out of these building blocks. Graphical 
tool support for constructing orchestrations is available, for instance, using the 
Business Process Modeling Notation (BPMN), as a graphical front-end to capture 
BPEL process descriptions. Numerous BPEL engines from different vendors already 
exist today for executing BPEL-based process descriptions. 

An example for such business rule engines is the Business Process Engine (BPE) as 
part of SAP XI (see above): The business process engine (BPE) is tightly connected 
with the integration engine and fully integrated into the integration server. During 
message flow between heterogeneous systems, the engine makes use of all the shared 
collaboration knowledge needed to execute a business process. An easy-to-use 
graphical modeller gives you access to the message types and interfaces involved in a 
process. It lets you define the series and sequence of steps and actions required to run 
the process. During execution, the BPE also correlates and links related messages 
based on a unique, user-defined identifier.  

In summary, there is a clear need for flexible configuration/variation of runtime 
behaviour by business domain experts (i.e., end users without sophisticated 
programming skills). Hence, DSLs or other formats for representing executable 
models are required, which can be dynamically loaded, interpreted and/or compiled at 
runtime. 
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5.2 Siemens 
Siemens AG is a collection of business units that operate in different domains with 
different product innovation cycles and different business models. Therefore there is 
neither one common development process for all Siemens business units, nor one 
consistent set of development practices for product line engineering. Main differences 
are 

• Solution versus product driven businesses, e.g. postal automation system 
solutions build on a common set of base assets, but have to be customized 
heavily for each customer, while telephone switches are standardized 
products. 

• Product/innovation cycles range from a couple of months for e.g. mobile 
phones up to decades for rail traffic control technology. 

• Security and reliability requirements, e.g. medical devices or traffic control 
systems have to fulfil high reliability and security requirements, while those 
requirements are a lot less critical for car entertainment systems. 

Here, a rough overview over the implementation practices employed at Siemens. 

5.2.1 Implementation Techniques for Variability 
For efficiently handling a family software systems in a domain it is essential to know 
the domain abstractions and to generalize and separate them with stable interfaces. 
Stable interfaces are the most profound mechanism for reuse and exchangeability of 
implementations, which is a way to support variability. 

Beyond that the following main technical options exist to cope with variations of base 
assets during software architecture, design and development : 

• Another level of indirection—In this category fall the typical design patterns 
used for decoupling and configuration, such as Factory, Strategy, Extension 
Interface, Bridge and Adapter, but also general framework principles such as 
inversion of control and dependency injection, as intensively used by the 
Spring framework [47]. To avoid the mingling of variations and allow for easy 
re-configuration, configuration options are externalized into configuration 
files, where variations can be expressed declaratively. Certain architectural 
patterns, sometimes also referred to as architectural styles, such as event-based 
communication and Pipes and Filters architectures allow for more easy 
variation, as they inherently decouple a system into exchangeable parts. 

• Language support—This includes approaches, such as aspect-oriented 
programming, where variations are encapsulated as aspects, template meta 
programming, where commonalities are expressed in templates, or domain-
specific languages (DSL) combined with code generation. Further, macro 
languages, such as the C++ #ifdef construct, allow to for compile-time binding 
in source code. 

All of those options are used in Siemens product lines, though generative approaches 
including AO are still rare.  
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the interface provided by the hardware element and the interface required by the 
software has to be implemented for each device, but typically there are no adaptations 
to the control software required if new devices of a known type are integrated.  

 

Nevertheless, developers of component-oriented business applications make 
increasing use of aspect-oriented programming, also within Siemens. Frameworks 
such as Spring or J2EE compliant containers like JBoss already offer aspect-oriented 
extensions. The very existence of frameworks, like EJB, and specific design patterns 
to decouple responsibilities confirms the need for AOP. They were developed to 
untangle concerns to be able to evolve and reuse infrastructure and business code 
separately. The advantage of AOP is that it is not limited to a single domain in the 
way that EJB is limited to server-side component computing [40]. Examples for AO 
in product lines in Siemens are Spring aspects for security and life cycle management 
in a platform for telecommunication applications and JBoss AOP in an IP based 
communication service for voice, video, unified messaging and instant messaging for 
service aspects.  

The typical usage scenario for generative approaches including MDD are currently 
either generating glue code for embedding business components in a given platform 
or for easily formalize-able code like communication code in embedded systems. An 
example for the former is a DSL and a generator for generating interception proxies 
for a telecommunication application platform. The DSL allows attaching interceptors 
to business components, simulating a simple AO infrastructure. Another example is 
the generation of MOST-bus specific communication code for small controllers in a 
medical imaging system. Communication partners (device controllers) and the 
payload are specified in tables, supported by dedicated editors. 

5.2.2 Binding Variability 
Depending on requirements like footprint, security, and runtime flexibility different 
measures are taken for implementing and binding variability. E.g. telecommunication 
enterprise applications need runtime configurability and therefore implement 
component containers and composition filters for flexibly changing the runtime 
configuration of a system. Automation and drives software requires often small 
runtime resource footprint, therefore the variability will be bound at load time through 
configuration files. For high security domains, e.g. train traffic control and 
supervision systems the code has to be certified by national certification bodies. 
Variation is only allowed before compile time, so variability usually gets incorporated 
via #ifdefs. The actual code for a variant is specified by preprocessor defines and 
must not change after certification. Code for new variants is introduced in new 
conditional compilation blocks only. 

5.2.3 Platforms 
Business units that do not have a dedicated product line engineering approach 
nevertheless usually have at least a common base asset for domain specific 
infrastructure services called a platform. Such platforms typically care for 
communication, persistence, user interface support, some introspection support like 
tracing and debugging features and usually typical domain specific extensions like 
image processing for optical systems.  

A common platform is often the first step towards product line engineering, since 
practices like commonality/variability analysis have to be introduced once the 
capabilities of a platform reach beyond general purpose middleware responsibilities. 
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Siemens has several examples of platforms that are the basis for further platforms, e.g. 
in medical engineering one platform for all imaging systems is the basis for further 
platforms in product lines for e.g. magnetic resonance systems or computer 
homographs.  

5.2.4 Application Engineering and Product Derivation 
For product driven business application engineering and product derivation can be as 
simple as assembling the product from the pre-built base assets. Often however, and 
definitely for solution driven business the product/solution hast to be customized or 
even product/solution specific extensions have to be implemented. 

The goal however is to avoid implementation and derive new products mostly through 
customization. For example in automation systems it is common to have a staged 
approach for customization. On the top level the layout of an automation system is 
configured according to the hardware and mechanical capability of a machine. On the 
next level of configuration machines offer specific functions for calibration, where the 
machine either automatically or guided by an operator determines reference positions 
or settings and keeps acquired data for production runs. On the last level, a customer 
specific customizations can be set by “programming” the machine through teach-in or 
with dedicated domain specific programming languages.  

Next to configuration files configuration and build management tools are the state-of-
the-art tooling for product derivation. Configuration management tools are used for 
keeping and managing variations of base assets and allow to assign a label to a set of 
base assets, and for each of them exactly one version, that then form a base line or a 
product. Build systems can either use this information or get the information in their 
own scripting language on where base assets can be found and set pre-compiler 
variables and compiler switches for generating products.  

While those mechanisms are proven technologies, the mapping between the 
information kept in build scripts and configuration management labels and the 
information on the feature set selected by those mechanisms is not well supported by 
tools. This information has to be kept separately. 

5.2.5 Summary 
According to the preceding sections the following techniques for implementing 
variability are in use at Siemens. 

Development is (mostly) carried out in object-oriented languages. These are used in 
combination with stable interfaces for important varying domain abstractions. The 
actual implementation relies frequently on design patterns such as Factory , Strategy, 
Extension Interface, Bridge and Adapter, which are used for decoupling and 
configuration. In addition framework principles such as inversion of control and 
dependency injection are applied. 

Apart from the actual implementation configuration options are externalized into 
configuration files, where variations can be expressed declaratively. It is at hand that 
this mechanism supports load time binding of variability. On the side of the system 
itself this is supported by component containers and composition filters for flexibly 
changing the runtime configuration of the system. Here, appropriate platforms are 
used, which form a common base asset for domain specific infrastructure services. In 
addition it should be mentioned that aspect-oriented programming is also used, where 
variations are encapsulated as aspects. As supporting technologies aspect-oriented 
frameworks like JBoss can be mentioned. 
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Design time variability binding can also be identified, applied examples are Template 
Metaprogramming, where commonalities are expressed in templates and generative 
approaches including MDD, where domain-specific languages (DSL) are combined 
with code generation. Macro languages, such as the C++ #ifdef construct, which 
allow compile-time binding in source code are popular in areas like Embedded 
Systems. 

On architectural level architectural patterns are used (which are sometimes also 
referred to as architectural styles), such as event-based communication and Pipes or 
Filters. 

5.3 HOLOS 
Besides specific customer driven software development, HOLOS has been developing 
software for the European Space Agency using the Agile Modelling Methodology 
(http://www.agilemodeling.com). 

This methodology is strongly used in projects where variability is not only a 
requirement at the end of the project (reusing project modules and lessons learnt from 
one project to another are current practice within ESA projects), but also during the 
development of the projects themselves. 

Motivation for the use of this methodology has its roots in the need to strengthen the 
end-user involvement in the project and ensure the compliance with requirements 
throughout the development cycles. The active involvement and cooperation of the 
end-users is expected and necessary to take advantage of the proposed development 
approach. 

The Agile methodology envisages three major iterations for the implementation 
process, which are: 

• Functional Model iteration; 

• Design & Build iteration; 

• Implementation. 

from which only implementation should be examined in this context. 

The Implementation phase is the scenario where the latest increments in the iterative 
development methodology drive to a prototype that is fully released to the end user. 
This represents the transition from the development to the operational scenario – 
including final tuning – as well as the effective handing over to the end user, who – 
conveniently assisted - will perform the operational validation. 

 

Figure 14. Implementation 
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The Implementation is subdivided into four major tasks: 

• the “user guidelines” tasks provides the straightforward connection with the 
end user and helps to plan the last cycle of iterations; 

• the effective implementation of the operational ready prototype; 

• the assistance to the users in their operation in the prototype. The Handing 
Over Process is expected to have taken place in the meantime. 

Prototype presentation, demonstration and effective validation – at the client’s 
premises – closes the nominal iteration cycle of this phase. 

HOLOS view on the application of this methodology is as follows. The results of the 
application of this methodology ensure that the components of software developed are 
fully compliant with the end-users’ requirements, since they are involved throughout 
the whole process. 

Partial test of the prototypes being developed also presents the end-user with possible 
limitations of the technology at an early stage, which, in turn, gives rise to revision of 
requirements, but also ensures that at the end, the user is presented with a system 
whose “usability” is directly what he/she expects. At an early stage the prototypes are 
released to the end user where tests are conducted, most of the times with real data 
and on real operational conditions. Early test of prototypes helps identifying possible 
bottlenecks (e.g. performance) and provides a forum for the discussion and selection 
of alternatives that effectively meet the requirements or the revision of requirements 
(even those introduced during the process). 

The development of the prototypes is always done in a modular fashion where module 
interfaces are agreed upfront, thus allowing for reusability. Based on the design of the 
early prototype the actual implementation stage starts. The development team 
assembles in a meeting where the architectural design is reviewed and the new 
modules are defined. At the end of the meeting the team will start producing the 
necessary refactoring of the code and produce the new code. Again, all these steps are 
closely followed by the client’s team that always provides some feedback on the 
produced items. 

The end of the implementation produces the review of the test documents. A 
requirement vs. test case matrix is produced to confirm that all the final requirements 
are covered by a test. 
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6. Conclusion 
As shown in chapter 3, there is a big variety of techniques for handling variability on 
implementation level. Different techniques are tailored for application on different 
scopes and have different qualitative properties. This level may be as low as the 
parameterization of a method and as high as the composition of software systems out 
of reusable components.  

In chapter 2 we defined a concept of a variation mechanism that can capture very 
different approaches of variation management. We introduced a coherent terminology 
that establishes a unified view on very different variation mechanisms and in this way 
enables their comparison. Besides, we described a broad range of criteria that provide 
an insight into the design space of the variation mechanisms and form a basis for the 
analysis of their differences, advantages, disadvantages and combination possibilities.  

The concepts and criteria formulated in chapter 2 were applied in chapter 3, were we 
analysed various technologies for their support for variability. Our analysis includes 
mainstream technology, such as object-oriented programming languages, design 
patterns, frameworks, component technology and conditional compilation. These 
approaches are in use for a long time in industry, and therefore are well understood. In 
addition, we evaluated a set of more advanced technologies that are of special interest 
to the project. Feature-oriented programming, aspect-oriented programming and 
model-driven development are falling to this category. The combination of aspect-
oriented and model-driven techniques has not been elaborated intentionally, because 
this is the focus of Task 3.3, which will identify respective strengths and weaknesses 
of AOP and MDD. The results of this task will constitute a part of the upcoming 
deliverable D3.2. 

Some of the evaluated approaches, e.g. component technology, are not traditionally 
seen as technology for variation management, but the conceptual basis formulated in 
chapter 2 allowed us to view these mechanisms from a new perspective and to 
identify their support for variability. The criteria formulated in chapter 2 will also be 
useful for evaluation of the future contributions of the project. 

Variations mechanisms are techniques, but in order to be applied techniques require 
support by appropriate tools. Tool support is an important aspect in the evaluation of 
applicability of techniques. For this reason additional criteria for the comparison of 
tools supporting variation mechanisms have been defined in section 2.2. Here, aspects 
like the underlying conceptual and technical concepts, the extent to which a 
development process is covered and availability and interoperability have been 
analysed. 

An overview about tools itself is given in chapter 4. In principle, almost any tool 
related to developing software may also be used in the context of software product 
lines. To narrow the choice of potential candidates, the set of considered tools has 
been limited to tools that have been developed for SPL engineering and management 
explicitly. 

Another aspect of this deliverable is the analysis of existing practices applied at the 
sites of the industrial partners of the AMPLE project. One might expect that the 
applied techniques are quite the same. But in fact this is not entirely the case. SAP 
relies heavily on in-house technologies for variation handling like the Switch 
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Framework or the Enhancement Framework, while at Siemens a much broader 
diversity of external and internal techniques and tools is deployed.  

From an abstract point of view however, similarities can be identified. Well 
understood “mainstream” technologies like OOP, design and architectural patterns, 
conditional compilation, frameworks techniques, Component-Based Software 
Engineering, and even Model-Driven Software Development are widely used. On the 
other hand, there is a lacking adoption of advanced research approaches like AOP, 
Feature-Oriented Programming, Feature Modelling, etc. The reasons are twofold: a) 
Maturity issues like scalability for large systems, tool integration, or debugging 
support, etc., which are rather out of scope for AMPLE in work package 3; and b) 
conceptual problems like resulting in maintainability concerns, where contributions 
are possible in the context of work package 3.  

For instance, one road block for the adoption of AOSD techniques is the strong 
coupling between aspect and base code, which complicates upgrade releases and 
allows customers to create unsolicited extensions to core components. Research in 
explicit aspect interfaces could address this problem.  

Another key challenge is the flexibility to arbitrarily change the binding time of some 
variability. Currently, the choice for a certain variation mechanism ultimately 
determines the binding time. Further research on Model-Driven techniques seems 
promising since MDD allows binding variability to code at various points; it could 
even produce runtime-interpretable DSLs out of some models to defer binding of 
variability to runtime. 

The identified challenges and potentials for improvement will be taken up in the 
ongoing Task 3.3. Conclusions for concrete improvements of SPL implementation 
techniques will be given in the upcoming Deliverable 3.2. 
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